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1 Basic Settings
Let (H1, 〈·, ·〉H1

),(H2, 〈·, ·〉H2
)be Hilbert spacces. We say (T,D(T)), T : H1 7→ H2 is unbounded

linear operator, if restricted in a dense subspace D(T) ⊂ H1, T is linear. Moreover, we say D(T) is
the domain of T.

Example 1. Let H1 = H2 = L2(R), T = d
dx , D(T) = C∞

c (R). Then (T,D(T)) is an unbounded
operator.

Let (T1,D(T1)) and (T2,D(T2)) (Ti : H1 7→ H2) be unbounded operators, if D(T1) ⊂ D(T2)
and T2 |D(T1) = T1, we say (T2,D(T2)) is an extension of (T1,D(T1)), denoted by (T1,D(T1)) <
(T2,D(T2)).

Remark 1. If there exists M > 0, such that ∀x ∈ D(T), ‖Tx‖ ≤M‖x‖, Then T could be extended
to a linear operator, with domain H1.

Next, we always assume (T,D(T)) is closable: If {xn}∞n=1 ⊂ D(T), such that limn→∞ xn = 0,
and limn→∞ Txn exists, then we must have limn→∞ Txn = 0.

Remark 2. 1. The unbounded operator in Example 1 is closable: let f0 ∈ C∞
c (R) → 0 in L2(R),

and f ′n → g for some g ∈ L2(R). If g 6= 0 ∈ L2(R), since C∞
c (R) is dense in L2(R), there

exists h ∈ C∞
c (R), s.t. 〈g, h〉L2(R) 6= 0. But

〈g, h〉L2(R) = lim
n→∞

〈f ′n, h〉L2(R) = − lim
n→∞

〈fn, h′〉L2(R) = 0.

As a result, we must have g = 0.

2. Let H1 = L2(R),H2 = R, D = Cc(R) ⊂ H. Consider the unbounded operator (T,D),
f → f(0). Then (T,D) is not closable: Let

fn(x) =


n(x+ 1/n), if x ∈ (−1/n, 0)

n(1/n− x), if x ∈ (0, 1/n)

0, otherwise.
(1)

Then fn ∈ Cc(R) and fn → 0 in L2(R). Moreover, fn(0) = 1, hence limn→∞ Tfn = 1 6= 0,
which means T is not closable.
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Definition 1. We say that (T,D(T)) is a close operator, if for a Cauchy Sequence {xn}∞n=1 ⊂
H1such that {Txn} ⊂ H2 is also a Cauchy sequence, then x := limn→∞ xn ∈ D(T), and Tx =
limn→∞ Txn.

Definition 2 (close extension). We say (T1,D(T1)) is a close extension of (T0,D(T0)), if

1. (T1,D1) is closed;

2. D(T0) ⊂ D(T1);

3. T1 |D(T0) = T0.

Let (T,D(T)) be an unbounded operator. For x, y ∈ D(T), define the inner product 〈·, ·〉T:

〈x, y〉T := 〈x, y〉H1
+ 〈Tx,T y〉H2

.

It’s easy to check that if (T,D(T)) is closed, then D(T) is complete with respect to the norm ‖ · ‖T.
Let D(T̄min) be the completion of D(T) under the norm ‖·‖T. Since ‖x‖H1 ≤ ‖x‖T, ∀x ∈ D(T),

we can think D(T̄min) as a dense subspace of H1. ∀x ∈ D(T̄min), since T is closable, define
T̄minx = limn→∞ Txn, where limn→∞ ‖xn − x‖T = 0. Then one can show that (T̄min,D(T̄min))
is a close extension of (T,D(T)), called minimal extension of (T,D(T )). Moreover, if (T1,D(T1))
is another close extension of (T,D(T)), then (T̄min,D(T̄min)) < (T1,D(T1)).

Example 2. 1. Let Ω be a bouned domain in Rn with smooth boundary. Let H1 = L2(Ω),
H2 = L2(Ω)⊕ ...⊕ L2(Ω)︸ ︷︷ ︸

n copies of L2(Ω)

, D = C∞
c (Ω). Define T : H1 7→ H2:

φ→ (
∂

∂x1
φ, ...,

∂

∂xn
φ), ∀φ ∈ C∞

c .

Then D(T̄min) is the Sobolev space W 1,2
0 (Ω), T is the weak derivatives (See page 245 in [1]

for more details).

2. Now let
D = {φ ∈ C∞(Ω) : φ and ∂xi

φ are L2-integable}.

Then D(T̄min) is the Sobolev space W 1,2(Ω) (See Theorem 2 in page 251 of [1]).

2 Adjoint operator
Definition 3 (Formal adjoint operator). We say (S,D(S)) is a formal adjoint operator of (T,D(T)),
if ∀x ∈ D(T), y ∈ D(S),

〈Tx, y〉H2 = 〈x, S y〉H1 .

If H1 = H2 = H and (S,D(S)) = (T,D(T)), then we say (T,D(T)) is symmetric.

It could be check easily that if (T,D(T)) has a formal adjoint operator (S,D(S)), then (T,D(T))
is closable: let xn ∈ D(T), such that xn → 0, Txn → g. If g 6= 0, one can find h ∈ D(S), such that
(g, h) 6= 0. But

〈g, h〉H2
= lim

n→∞
〈Txn, h〉H2

= lim
n→∞

〈xn, Sh〉H1
= 0,
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which is a contradiction.
In fact, if (T,D(T)) is closable, then it has a special formal adjoint operator, called adjoint

operator:

Definition 4 (Adjoint Operator). We say that (T∗,D(T∗)) is the adjont operator of (T, D(T)), if
(T∗,D(T∗)) is a formal adjoint operator of (T,D(T)), and

D(T∗) := {y ∈ H2 : there exists My > 0such that |〈Tx, y〉H2
| ≤My‖x‖H1

, ∀x ∈ D(T)}.

If H1 = H2, (T∗,D(T∗)) = (T,D(T)), then we say (T,D(T)) is self-adjoint.

It’s easy to check that if (T1,D(T1)) < (T2,D(T2)), then

(T∗
2,D(T∗

2)) < (T∗
1,D(T∗

1)).

Moreover, it follows from the definition that (T∗,D(T∗)) is closed: let {yn} ⊂ D(T∗) be a Cauchy
sequence, s.t. T∗(yn) is a Cauchy sequence in H1. Let y = limn→∞ yn ∈ H2, z = limn→∞ T∗(yn) ∈
H1, then for all x ∈ D(T),

|〈Tx, y〉H2
| = lim

n→∞
|〈Tx, yn〉H2

| = lim
n→∞

|〈x,T∗ yn〉H1
| = |〈x, z〉H1

| ≤ ‖z‖H1
‖x‖H1

.

Hence, one can see that y ∈ D(T∗), moreover T ∗y = z.
In fact, one has (T∗∗,D(T∗∗)) = (T̄min,D(T̄min)).
If (S,D(S)) is a formal adjoint operator of (T,D(T)) then (S∗,D(S∗)) is a close extension of

(T,D(T)).

Example 3. Let Ω be a bounded domain in Rn with smooth boundary. Let H1 = L2(Ω), H2 =
L2(Ω)⊕ ...⊕ L2(Ω)︸ ︷︷ ︸

n copies of L2(Ω)

, D = C∞
c (Ω). Set T : H1 7→ H2:

φ→ (
∂

∂x1
φ, ...,

∂

∂xn
φ), ∀φ ∈ C∞

c .

Set Dn := C∞
c (Ω)⊕ ...⊕ C∞

c (Ω)︸ ︷︷ ︸
n copies of C∞

c (Ω)

, and S : H2 7→ H1,

(φ1, ...φn) → −
n∑

k=1

∂

∂xk
φk, φk ∈ C∞

c (Ω),

Then (S,Dn) is a formal adjoint operator of (T,D). Moreover, it follows from the definition of
Sobolev space that D(S∗) =W 1,2(Ω). Here we give another desciption of Sobolev space W 1,2(Ω).

3 Friedrichs Extension and Essential self-adjoint
Let (T,D(T)) be a nonnegative symmetric operator, that is, for all φ ∈ D(T),

〈Tφ, φ〉H = 〈φ, Tφ〉H ≥ 0.
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Then, on D(T),
〈φ, ψ〉T1/2 := 〈φ, ψ〉H + 〈φ, Tψ〉H, φ, ψ ∈ H

defines an inner product. Let H1 be the compection of D(T) under the norm ‖ · ‖T 1/2then H1 could
be think as a subspace of H. Set

DF := {φ ∈ H1 : 〈η, φ〉H + 〈Tη, φ〉H ≤Mϕ‖η‖H(∀η ∈ D(T)) for some Mϕ > 0.}

By Riesz representation theorem, there exists u ∈ H, such that

〈η, φ〉H + 〈Tη, φ〉H = 〈η, u〉H. (2)

Now set TF (φ) = u− φ. We called (TF ,DF ) be Friedrichs extension of (T,D(T )). One can check
that (TF ,DF ) is a closed extension of (T,D(T)), and is self-adjoint.

Proposition 1. Let Ω be a bounded domain in Rn with smooth boundary. H1 = H2 = L2(Rn),
D = C∞

c (Rn), then the operator T = ∆, φ → ∆φ := −
∑

i ∂
2
i φ is symmetric. Then, u ∈ DF iff

u ∈W 1,2
0 (Ω) solve EPDEs below weakly for some g ∈ L2(Rn) :{

∆u = g, in Ω;

u = 0, on ∂Ω,
(3)

i.e., for all v ∈W 1,2
0 (Ω), ∫

Ω

∇u · ∇v =

∫
Ω

hv.

Futhermore, TF u = g.
Next, let DN = {u ∈ C∞(Ω̄) : ∂νu = 0 on Ω} be the domain of TN = ∆, then u ∈ (DN )F iff

u ∈W 1,2(Ω) solves EPDEs below weakly for some h ∈ L2(Rn):{
∆u = h, in Ω;

∂νu = 0, on ∂Ω,
(4)

i.e., for all v ∈W 1,2(Ω), ∫
Ω

∇u · ∇v =

∫
Ω

hv.

Furthermore, (TF )∗u = g.
Here ν is the normal direction on ∂Ω.

Proof. If u ∈ DF , then there exists g ∈ L2(Ω), s.t. for any η ∈ C∞
c (Ω)

〈∆η, u〉L2(Ω) = 〈η, g − u〉L2(Ω).

While integration by parts shows that 〈Tη, u〉L2(Ω) =
∫
Ω
∇η · ∇u =

∫
Ω
η(g − u). Since C∞

c (Ω)

is dense in W 1,2
0 (Ω), one can see that u solves{

∆u = g − u, in Ω

u = 0, on ∂Ω.
(5)
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On the other hand, if u ∈W 1,2
0 (Ω) solves (3) for some g, integation by parts shows that

〈∆η, u〉L2(Ω) + 〈η, u〉L2(Ω) ≤ (‖g‖L2(Ω) + ‖u‖L2(Ω))‖η‖L2(Ω)

for all u ∈ C∞
c (Ω). Hence u ∈ DF

For Neumann’s case, the proof is similar. The only somewhat nontrivial part is to show that DN

is dense in W 1,2(Ω) (w.r.t. to the norm ‖ · ‖W 1,2(Ω)(Ω)): First, since C∞(Ω̄) is dense in W 1,2(Ω),
for u ∈ DN , any ε > 0, there exists v ∈ C∞(Ω̄), s.t. ‖u − v‖W 1,2(Ω) < ε/2. Fix η ∈ C∞

c (R), s.t.
suppη ⊃ (−1, 1), η|(−1/2,1/2) ≡ 1. Set M =

∫
∂Ω

|∂νv|2 +
∫
∂Ω

|∇∂Ω∂νv|2. Let d(x) := dist(x,Ω),
w(x) = d(x)η(NMd(x))∂νv, then when N > 0 is big, ‖w‖W 1,2(Ω) ≤ C

N for some C > 0 depending
only on Ω. Furthermore, ∂νw = ∂νv. Then for N is big enough, ‖u−(v+w)‖ ≤ ε, and ∂ν(v+w) = 0.
Hence, DN is dense in W 1,2(Ω).

Moreover, one has

Theorem 1. When Ω ⊂ Rn is a bounded domain with smooth boundary, then TF (or (TN )F ) has
discrete spectrum 0 < λ1 ≤ λ2 ≤ · · · ≤ λk · · · (or respectively, 0 ≤ λ1,N ≤ λ2,N ≤ · · · ≤ λk,N · · · ).
Moreover, their eigenfunctions {ek} (or {ek,N}) respectively) forms an orthonormal basis of L2(Ω).
Furthermore, limk→∞ λk = ∞ (or limk→∞ λk,N = ∞ respectively).

4 min-max principle and EPDEs with boundary conditions
In this section, we would like to present another description of eigenvalues of Laplacian operator.
For any vector space L, let Φk(L) denote the set of k-dimensional vector spaces.

Let Ω be a bounded domain in Rn with smooth boundary.
For u ∈W 1,2

0 (Ω) or u ∈W 1,2(Ω), consider the fuctional

F(u) =

∫
Ω
|∇u|2

|u|2
.

Theorem 2. Let lk = infV ∈Φk(W
1,2
0 (Ω)) supu∈V F(u), then there exists 0 6= uk ∈W 1,2

0 (Ω) solves{
∆uk = lkuk, in Ω,

uk = 0, on ∂Ω
(6)

weakly. That is, for any w ∈W 1,2
0 (Ω),∫

Ω

∇uk · ∇w = lk

∫
Ω

ukw.

Moreover, uk is orthogonal to {uj}k−1
j=1 .

Proof. For simplicity, we prove the case of k = 1 only.
Let l1 = inf0 ̸=u∈W 1,2

0 (Ω) F(u). Let wn ∈ W 1,2
0 (Ω) such that ‖wn‖L2(Ω) = 1 F(wn) → λ. Then

‖wn‖W 1,2(Ω) ≤ C for some C > 0. Hence, since W 1,2(Ω) ↪→ L2(Ω) compactly, we may assume that
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wn → u1 for some u1 ∈ L2(Ω). Moreover, since ‖∇wn‖L2(Ω) ≤ C, we may assume that ∇wn → ψ
in weak L2(Ω)-topology.

Then for ρ ∈ C∞
c (Ω),∫

Ω

ψρ = lim
n→∞

∫
Ω

∇wnρ = − lim
n→∞

∫
Ω

wn∇ρ = −
∫
Ω

u1∇ρ

Hence, u1 has weak derivative ψ. Hence u1 ∈W 1,2
0 (Ω).

Next, we would like to show that u1 satisfies the EPDEs (6) weakly.
Fix 0 6= ρ ∈W 1,2

0 (Ω), ut = u1 + tρ, then we must have

d

dt
F(ut)|t=0 = 0.

Which, by a straightforward computation, implies that∫
Ω

∇u∇ρ = l1

∫
Ω

uρ.

Similarly,

Theorem 3. Let lk,N = infV ∈Φk(W 1,2(Ω)) supu∈V F(u), then there exists 0 6= uk,N ∈W 1,2(Ω) solves{
∆uk,N = lk,Nuk,N , in Ω,

∂νuk,N = 0, on ∂Ω
(7)

weakly. That is, for any w ∈W 1,2(Ω),∫
Ω

∇uk · ∇w = lk

∫
Ω

ukw.

Moreover, uk,N is orthogonal to {uj,N}k−1
j=1 .

Remark 3. In fact, λk = lk and λk,N = lk,N . Moreover, one can take ek = uk

∥uk∥L2(Ω)
and ek,N =

uk,N

∥uk,N∥L2(Ω)
.

To be continued...
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