Unbounded operators in Hilbert spaces and EPDEs with boundary conditions

Junrong Yan

August 29, 2022

1 Basic Settings

Let $(\mathcal{H}_1, \langle \cdot, \cdot \rangle_{\mathcal{H}_1}), (\mathcal{H}_2, \langle \cdot, \cdot \rangle_{\mathcal{H}_2})$ be Hilbert spaces. We say $(T, \mathcal{D}(T)), T : \mathcal{H}_1 \mapsto \mathcal{H}_2$ is unbounded linear operator, if restricted in a dense subspace $\mathcal{D}(T) \subset \mathcal{H}_1$, T is linear. Moreover, we say $\mathcal{D}(T)$ is the domain of T.

Example 1. Let $\mathcal{H}_1 = \mathcal{H}_2 = L^2(\mathbb{R})$, $T = \frac{d}{dx}$, $\mathcal{D}(T) = C_c^{\infty}(\mathbb{R})$. Then $(T, \mathcal{D}(T))$ is an unbounded operator.

Let $(T_1, \mathcal{D}(T_1))$ and $(T_2, \mathcal{D}(T_2))$ $(T_i : \mathcal{H}_1 \mapsto \mathcal{H}_2)$ be unbounded operators, if $\mathcal{D}(T_1) \subset \mathcal{D}(T_2)$ and $T_2|_{\mathcal{D}(T_1)} = T_1$, we say $(T_2, \mathcal{D}(T_2))$ is an extension of $(T_1, \mathcal{D}(T_1))$, denoted by $(T_1, \mathcal{D}(T_1)) < (T_2, \mathcal{D}(T_2))$.

Remark 1. If there exists M > 0, such that $\forall x \in \mathcal{D}(T)$, $||Tx|| \leq M||x||$, Then T could be extended to a linear operator, with domain \mathcal{H}_1 .

Next, we always assume $(T, \mathcal{D}(T))$ is closable: If $\{x_n\}_{n=1}^{\infty} \subset \mathcal{D}(T)$, such that $\lim_{n\to\infty} x_n = 0$, and $\lim_{n\to\infty} T x_n$ exists, then we must have $\lim_{n\to\infty} T x_n = 0$.

Remark 2. 1. The unbounded operator in Example 1 is closable: let $f_0 \in C_c^{\infty}(\mathbb{R}) \to 0$ in $L^2(\mathbb{R})$, and $f'_n \to g$ for some $g \in L^2(\mathbb{R})$. If $g \neq 0 \in L^2(\mathbb{R})$, since $C_c^{\infty}(\mathbb{R})$ is dense in $L^2(\mathbb{R})$, there exists $h \in C_c^{\infty}(\mathbb{R})$, s.t. $\langle g, h \rangle_{L^2(\mathbb{R})} \neq 0$. But

$$\langle g,h\rangle_{L^2(\mathbb{R})} = \lim_{n\to\infty} \langle f'_n,h\rangle_{L^2(\mathbb{R})} = -\lim_{n\to\infty} \langle f_n,h'\rangle_{L^2(\mathbb{R})} = 0$$

As a result, we must have g = 0.

2. Let $\mathcal{H}_1 = L^2(\mathbb{R}), \mathcal{H}_2 = \mathbb{R}, \ \mathcal{D} = C_c(\mathbb{R}) \subset \mathcal{H}$. Consider the unbounded operator $(T, \mathcal{D}), f \to f(0)$. Then (T, \mathcal{D}) is not closable: Let

$$f_n(x) = \begin{cases} n(x+1/n), & \text{if } x \in (-1/n,0) \\ n(1/n-x), & \text{if } x \in (0,1/n) \\ 0, & \text{otherwise.} \end{cases}$$
(1)

Then $f_n \in C_c(\mathbb{R})$ and $f_n \to 0$ in $L^2(\mathbb{R})$. Moreover, $f_n(0) = 1$, hence $\lim_{n\to\infty} Tf_n = 1 \neq 0$, which means T is not closable.

Definition 1. We say that $(T, \mathcal{D}(T))$ is a close operator, if for a Cauchy Sequence $\{x_n\}_{n=1}^{\infty} \subset$ \mathcal{H}_1 such that $\{Tx_n\} \subset \mathcal{H}_2$ is also a Cauchy sequence, then $x := \lim_{n \to \infty} x_n \in \mathcal{D}(T)$, and Tx = $\lim_{n\to\infty} \mathrm{T} x_n.$

Definition 2 (close extension). We say $(T_1, \mathcal{D}(T_1))$ is a close extension of $(T_0, \mathcal{D}(T_0))$, if

- 1. (T_1, \mathcal{D}_1) is closed;
- 2. $\mathcal{D}(T_0) \subset \mathcal{D}(T_1);$
- 3. $T_1|_{\mathcal{D}(T_0)} = T_0$.

Let $(T, \mathcal{D}(T))$ be an unbounded operator. For $x, y \in \mathcal{D}(T)$, define the inner product $\langle \cdot, \cdot \rangle_T$:

$$\langle x, y \rangle_{\mathrm{T}} := \langle x, y \rangle_{\mathcal{H}_1} + \langle \mathrm{T} x, \mathrm{T} y \rangle_{\mathcal{H}_2}.$$

It's easy to check that if $(T, \mathcal{D}(T))$ is closed, then $\mathcal{D}(T)$ is complete with respect to the norm $\|\cdot\|_{T}$.

Let $\mathcal{D}(\bar{T}_{min})$ be the completion of $\mathcal{D}(T)$ under the norm $\|\cdot\|_{T}$. Since $\|x\|_{\mathcal{H}_{1}} \leq \|x\|_{T}, \forall x \in \mathcal{D}(T)$, we can think $\mathcal{D}(\bar{T}_{min})$ as a dense subspace of \mathcal{H}_1 . $\forall x \in \mathcal{D}(\bar{T}_{min})$, since T is closable, define $\bar{T}_{min}x = \lim_{n \to \infty} T x_n$, where $\lim_{n \to \infty} \|x_n - x\|_T = 0$. Then one can show that $(\bar{T}_{min}, \mathcal{D}(\bar{T}_{min}))$ is a close extension of $(T, \mathcal{D}(T))$, called minimal extension of $(T, \mathcal{D}(T))$. Moreover, if $(T_1, \mathcal{D}(T_1))$ is another close extension of $(T, \mathcal{D}(T))$, then $(\bar{T}_{min}, \mathcal{D}(\bar{T}_{min})) < (T_1, \mathcal{D}(T_1))$.

Example 2. 1. Let Ω be a bound domain in \mathbb{R}^n with smooth boundary. Let $\mathcal{H}_1 = L^2(\Omega)$, $\mathcal{H}_2 = \underbrace{L^2(\Omega) \oplus ... \oplus L^2(\Omega)}_{n \text{ copies of } L^2(\Omega)}, \mathcal{D} = C_c^{\infty}(\Omega).$ Define $T : \mathcal{H}_1 \mapsto \mathcal{H}_2:$

$$n \ copies \ of \ L^2(\Omega)$$

$$\phi \to (\frac{\partial}{\partial x_1}\phi,...,\frac{\partial}{\partial x_n}\phi), \forall \phi \in C_c^\infty$$

Then $\mathcal{D}(\bar{T}_{min})$ is the Sobolev space $W_0^{1,2}(\Omega)$, T is the weak derivatives (See page 245 in [1] for more details).

2. Now let

 $\mathcal{D} = \{ \phi \in C^{\infty}(\Omega) : \phi \text{ and } \partial_{x_i} \phi \text{ are } L^2 \text{-integable} \}.$

Then $\mathcal{D}(\bar{T}_{min})$ is the Sobolev space $W^{1,2}(\Omega)$ (See Theorem 2 in page 251 of [1]).

$\mathbf{2}$ Adjoint operator

Definition 3 (Formal adjoint operator). We say $(S, \mathcal{D}(S))$ is a formal adjoint operator of $(T, \mathcal{D}(T))$, if $\forall x \in \mathcal{D}(\mathbf{T}), y \in \mathcal{D}(\mathbf{S}),$

$$\langle \mathrm{T} x, y \rangle_{\mathcal{H}_2} = \langle x, \mathrm{S} y \rangle_{\mathcal{H}_1}.$$

If $\mathcal{H}_1 = \mathcal{H}_2 = \mathcal{H}$ and $(S, \mathcal{D}(S)) = (T, \mathcal{D}(T))$, then we say $(T, \mathcal{D}(T))$ is symmetric.

It could be check easily that if $(T, \mathcal{D}(T))$ has a formal adjoint operator $(S, \mathcal{D}(S))$, then $(T, \mathcal{D}(T))$ is closable: let $x_n \in \mathcal{D}(T)$, such that $x_n \to 0$, $T x_n \to g$. If $g \neq 0$, one can find $h \in D(S)$, such that $(g,h) \neq 0$. But

$$\langle g,h\rangle_{\mathcal{H}_2} = \lim_{n \to \infty} \langle Tx_n,h\rangle_{\mathcal{H}_2} = \lim_{n \to \infty} \langle x_n,Sh\rangle_{\mathcal{H}_1} = 0,$$

which is a contradiction.

In fact, if $(T, \mathcal{D}(T))$ is closable, then it has a special formal adjoint operator, called adjoint operator:

Definition 4 (Adjoint Operator). We say that $(T^*, \mathcal{D}(T^*))$ is the adjoint operator of (T, D(T)), if $(T^*, \mathcal{D}(T^*))$ is a formal adjoint operator of $(T, \mathcal{D}(T))$, and

$$\mathcal{D}(\mathbf{T}^*) := \{ y \in \mathcal{H}_2 : \text{ there exists } M_y > 0 \text{ such that } |\langle \mathbf{T} x, y \rangle_{\mathcal{H}_2} | \le M_y ||x||_{\mathcal{H}_1}, \forall x \in \mathcal{D}(\mathbf{T}) \}.$$

If $\mathcal{H}_1 = \mathcal{H}_2$, $(T^*, \mathcal{D}(T^*)) = (T, \mathcal{D}(T))$, then we say $(T, \mathcal{D}(T))$ is self-adjoint.

It's easy to check that if $(T_1, \mathcal{D}(T_1)) < (T_2, \mathcal{D}(T_2))$, then

$$(T_2^*, \mathcal{D}(T_2^*)) < (T_1^*, \mathcal{D}(T_1^*)).$$

Moreover, it follows from the definition that $(T^*, \mathcal{D}(T^*))$ is closed: let $\{y_n\} \subset \mathcal{D}(T^*)$ be a Cauchy sequence, s.t. $T^*(y_n)$ is a Cauchy sequence in \mathcal{H}_1 . Let $y = \lim_{n \to \infty} y_n \in \mathcal{H}_2$, $z = \lim_{n \to \infty} T^*(y_n) \in \mathcal{H}_1$, then for all $x \in D(T)$,

$$|\langle \mathbf{T} x, y \rangle_{\mathcal{H}_2}| = \lim_{n \to \infty} |\langle \mathbf{T} x, y_n \rangle_{\mathcal{H}_2}| = \lim_{n \to \infty} |\langle x, \mathbf{T}^* y_n \rangle_{\mathcal{H}_1}| = |\langle x, z \rangle_{\mathcal{H}_1}| \le ||z||_{\mathcal{H}_1} ||x||_{\mathcal{H}_1}.$$

Hence, one can see that $y \in \mathcal{D}(\mathbf{T}^*)$, moreover $T^*y = z$.

In fact, one has $(\mathbf{T}^{**}, \mathcal{D}(\mathbf{T}^{**})) = (\bar{\mathbf{T}}_{min}, \mathcal{D}(\bar{\mathbf{T}}_{min})).$

If $(S, \mathcal{D}(S))$ is a formal adjoint operator of $(T, \mathcal{D}(T))$ then $(S^*, \mathcal{D}(S^*))$ is a close extension of $(T, \mathcal{D}(T))$.

Example 3. Let Ω be a bounded domain in \mathbb{R}^n with smooth boundary. Let $\mathcal{H}_1 = L^2(\Omega)$, $\mathcal{H}_2 = L^2(\Omega) \oplus ... \oplus L^2(\Omega)$, $\mathcal{D} = C_c^{\infty}(\Omega)$. Set $T : \mathcal{H}_1 \mapsto \mathcal{H}_2$:

n copies of $L^2(\Omega)$

$$\phi \rightarrow (\frac{\partial}{\partial x_1}\phi,...,\frac{\partial}{\partial x_n}\phi), \forall \phi \in C_c^\infty.$$

Set $\mathcal{D}^n := \underbrace{C_c^{\infty}(\Omega) \oplus ... \oplus C_c^{\infty}(\Omega)}_{n \text{ copies of } C_c^{\infty}(\Omega)}$, and $S : \mathcal{H}_2 \mapsto \mathcal{H}_1$,

$$(\phi_1, ... \phi_n) \to -\sum_{k=1}^n \frac{\partial}{\partial x_k} \phi_k, \phi_k \in C_c^\infty(\Omega),$$

Then (S, \mathcal{D}^n) is a formal adjoint operator of (T, \mathcal{D}) . Moreover, it follows from the definition of Sobolev space that $\mathcal{D}(S^*) = W^{1,2}(\Omega)$. Here we give another description of Sobolev space $W^{1,2}(\Omega)$.

3 Friedrichs Extension and Essential self-adjoint

Let $(T, \mathcal{D}(T))$ be a nonnegative symmetric operator, that is, for all $\phi \in \mathcal{D}(T)$,

$$\langle T\phi, \phi \rangle_{\mathcal{H}} = \langle \phi, T\phi \rangle_{\mathcal{H}} \ge 0$$

Then, on $\mathcal{D}(\mathbf{T})$,

$$\langle \phi, \psi \rangle_{\mathrm{T}^{1/2}} := \langle \phi, \psi \rangle_{\mathcal{H}} + \langle \phi, T\psi \rangle_{\mathcal{H}}, \phi, \psi \in \mathcal{H}$$

defines an inner product. Let \mathcal{H}_1 be the compection of $\mathcal{D}(T)$ under the norm $\|\cdot\|_{T^{1/2}}$ then \mathcal{H}_1 could be think as a subspace of \mathcal{H} . Set

$$\mathcal{D}^{F} := \{ \phi \in \mathcal{H}_{1} : \langle \eta, \phi \rangle_{H} + \langle T\eta, \phi \rangle_{\mathcal{H}} \le M_{\phi} \| \eta \|_{\mathcal{H}} (\forall \eta \in \mathcal{D}(T)) \text{ for some } M_{\phi} > 0. \}$$

By Riesz representation theorem, there exists $u \in \mathcal{H}$, such that

$$\langle \eta, \phi \rangle_H + \langle T\eta, \phi \rangle_{\mathcal{H}} = \langle \eta, u \rangle_{\mathcal{H}}.$$
 (2)

Now set $T^F(\phi) = u - \phi$. We called (T^F, \mathcal{D}^F) be Friedrichs extension of $(T, \mathcal{D}(T))$. One can check that (T^F, \mathcal{D}^F) is a closed extension of $(T, \mathcal{D}(T))$, and is self-adjoint.

Proposition 1. Let Ω be a bounded domain in \mathbb{R}^n with smooth boundary. $\mathcal{H}_1 = \mathcal{H}_2 = L^2(\mathbb{R}^n)$, $\mathcal{D} = C_c^{\infty}(\mathbb{R}^n)$, then the operator $T = \Delta$, $\phi \to \Delta \phi := -\sum_i \partial_i^2 \phi$ is symmetric. Then, $u \in \mathcal{D}^F$ iff $u \in W_0^{1,2}(\Omega)$ solve EPDEs below weakly for some $g \in L^2(\mathbb{R}^n)$:

$$\begin{cases} \Delta u = g, \ in \ \Omega; \\ u = 0, \ on \ \partial\Omega, \end{cases}$$
(3)

i.e., for all $v \in W_0^{1,2}(\Omega)$,

$$\int_{\Omega} \nabla u \cdot \nabla v = \int_{\Omega} h v.$$

Futhermore, $T^F u = g$.

Next, let $\mathcal{D}^N = \{ u \in C^{\infty}(\overline{\Omega}) : \partial_{\nu} u = 0 \text{ on } \Omega \}$ be the domain of $T^N = \Delta$, then $u \in (\mathcal{D}^N)^F$ iff $u \in W^{1,2}(\Omega)$ solves EPDEs below weakly for some $h \in L^2(\mathbb{R}^n)$:

$$\begin{cases} \Delta u = h, \text{ in } \Omega;\\ \partial_{\nu} u = 0, \text{ on } \partial\Omega, \end{cases}$$

$$\tag{4}$$

i.e., for all $v \in W^{1,2}(\Omega)$,

$$\int_{\Omega} \nabla u \cdot \nabla v = \int_{\Omega} h v$$

Furthermore, $(T^F)^* u = g$.

Here ν is the normal direction on $\partial\Omega$.

Proof. If $u \in \mathcal{D}^F$, then there exists $g \in L^2(\Omega)$, s.t. for any $\eta \in C_c^{\infty}(\Omega)$

$$\langle \Delta \eta, u \rangle_{L^2(\Omega)} = \langle \eta, g - u \rangle_{L^2(\Omega)}$$

While integration by parts shows that $\langle T\eta, u \rangle_{L^2(\Omega)} = \int_{\Omega} \nabla \eta \cdot \nabla u = \int_{\Omega} \eta(g-u)$. Since $C_c^{\infty}(\Omega)$ is dense in $W_0^{1,2}(\Omega)$, one can see that u solves

$$\begin{cases} \Delta u = g - u, \text{ in } \Omega\\ u = 0, \text{ on } \partial\Omega. \end{cases}$$
(5)

On the other hand, if $u \in W_0^{1,2}(\Omega)$ solves (3) for some g, integation by parts shows that

 $\langle \Delta \eta, u \rangle_{L^2(\Omega)} + \langle \eta, u \rangle_{L^2(\Omega)} \le \left(\|g\|_{L^2(\Omega)} + \|u\|_{L^2(\Omega)} \right) \|\eta\|_{L^2(\Omega)}$

for all $u \in C_c^{\infty}(\Omega)$. Hence $u \in \mathcal{D}^F$

For Neumann's case, the proof is similar. The only somewhat nontrivial part is to show that \mathcal{D}^N is dense in $W^{1,2}(\Omega)$ (w.r.t. to the norm $\|\cdot\|_{W^{1,2}(\Omega)}(\Omega)$): First, since $C^{\infty}(\bar{\Omega})$ is dense in $W^{1,2}(\Omega)$, for $u \in \mathcal{D}^N$, any $\epsilon > 0$, there exists $v \in C^{\infty}(\bar{\Omega})$, s.t. $\|u - v\|_{W^{1,2}(\Omega)} < \epsilon/2$. Fix $\eta \in C_c^{\infty}(\mathbb{R})$, s.t. $\sup p\eta \supset (-1,1), \eta|_{(-1/2,1/2)} \equiv 1$. Set $M = \int_{\partial\Omega} |\partial_{\nu}v|^2 + \int_{\partial\Omega} |\nabla^{\partial\Omega}\partial_{\nu}v|^2$. Let $d(x) := dist(x,\Omega), w(x) = d(x)\eta(NMd(x))\partial_{\nu}v$, then when N > 0 is big, $\|w\|_{W^{1,2}(\Omega)} \leq \frac{C}{N}$ for some C > 0 depending only on Ω . Furthermore, $\partial_{\nu}w = \partial_{\nu}v$. Then for N is big enough, $\|u - (v+w)\| \leq \epsilon$, and $\partial_{\nu}(v+w) = 0$. Hence, \mathcal{D}^N is dense in $W^{1,2}(\Omega)$.

Moreover, one has

Theorem 1. When $\Omega \subset \mathbb{R}^n$ is a bounded domain with smooth boundary, then T^F (or $(\mathrm{T}^N)^F$) has discrete spectrum $0 < \lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_k \cdots$ (or respectively, $0 \leq \lambda_{1,N} \leq \lambda_{2,N} \leq \cdots \leq \lambda_{k,N} \cdots$). Moreover, their eigenfunctions $\{e_k\}$ (or $\{e_{k,N}\}$) respectively) forms an orthonormal basis of $L^2(\Omega)$. Furthermore, $\lim_{k\to\infty} \lambda_k = \infty$ (or $\lim_{k\to\infty} \lambda_{k,N} = \infty$ respectively).

4 min-max principle and EPDEs with boundary conditions

In this section, we would like to present another description of eigenvalues of Laplacian operator. For any vector space L, let $\Phi_k(L)$ denote the set of k-dimensional vector spaces.

Let Ω be a bounded domain in \mathbb{R}^n with smooth boundary.

For $u \in W_0^{1,2}(\Omega)$ or $u \in W^{1,2}(\Omega)$, consider the functional

$$\mathcal{F}(u) = rac{\int_{\Omega} |\nabla u|^2}{|u|^2}.$$

Theorem 2. Let $l_k = \inf_{V \in \Phi_k(W_0^{1,2}(\Omega))} \sup_{u \in V} \mathcal{F}(u)$, then there exists $0 \neq u_k \in W_0^{1,2}(\Omega)$ solves

$$\begin{cases} \Delta u_k = l_k u_k, & in \ \Omega, \\ u_k = 0, & on \ \partial\Omega \end{cases}$$
(6)

weakly. That is, for any $w \in W_0^{1,2}(\Omega)$,

$$\int_{\Omega} \nabla u_k \cdot \nabla w = l_k \int_{\Omega} u_k w.$$

Moreover, u_k is orthogonal to $\{u_j\}_{j=1}^{k-1}$.

Proof. For simplicity, we prove the case of k = 1 only.

Let $l_1 = \inf_{0 \neq u \in W_0^{1,2}(\Omega)} \mathcal{F}(u)$. Let $w_n \in W_0^{1,2}(\Omega)$ such that $||w_n||_{L^2(\Omega)} = 1 \mathcal{F}(w_n) \to \lambda$. Then $||w_n||_{W^{1,2}(\Omega)} \leq C$ for some C > 0. Hence, since $W^{1,2}(\Omega) \hookrightarrow L^2(\Omega)$ compactly, we may assume that

 $w_n \to u_1$ for some $u_1 \in L^2(\Omega)$. Moreover, since $\|\nabla w_n\|_{L^2(\Omega)} \leq C$, we may assume that $\nabla w_n \to \psi$ in weak $L^2(\Omega)$ -topology.

Then for $\rho \in C_c^{\infty}(\Omega)$,

$$\int_{\Omega} \psi \rho = \lim_{n \to \infty} \int_{\Omega} \nabla w_n \rho = -\lim_{n \to \infty} \int_{\Omega} w_n \nabla \rho = -\int_{\Omega} u_1 \nabla \rho$$

Hence, u_1 has weak derivative ψ . Hence $u_1 \in W_0^{1,2}(\Omega)$. Next, we would like to show that u_1 satisfies the EPDEs (6) weakly. Fix $0 \neq \rho \in W_0^{1,2}(\Omega)$, $u_t = u_1 + t\rho$, then we must have

$$\frac{d}{dt}\mathcal{F}(u_t)|_{t=0} = 0$$

Which, by a straightforward computation, implies that

$$\int_{\Omega} \nabla u \nabla \rho = l_1 \int_{\Omega} u \rho.$$

Similarly,

Theorem 3. Let $l_{k,N} = \inf_{V \in \Phi_k(W^{1,2}(\Omega))} \sup_{u \in V} \mathcal{F}(u)$, then there exists $0 \neq u_{k,N} \in W^{1,2}(\Omega)$ solves

$$\begin{cases} \Delta u_{k,N} = l_{k,N} u_{k,N}, & in \ \Omega, \\ \partial_{\nu} u_{k,N} = 0, & on \ \partial\Omega \end{cases}$$

$$\tag{7}$$

weakly. That is, for any $w \in W^{1,2}(\Omega)$,

$$\int_{\Omega} \nabla u_k \cdot \nabla w = l_k \int_{\Omega} u_k w.$$

Moreover, $u_{k,N}$ is orthogonal to $\{u_{j,N}\}_{j=1}^{k-1}$.

Remark 3. In fact, $\lambda_k = l_k$ and $\lambda_{k,N} = l_{k,N}$. Moreover, one can take $e_k = \frac{u_k}{\|u_k\|_{L^2(\Omega)}}$ and $e_{k,N} = \frac{u_k}{\|u_k\|_{L^2(\Omega)}}$ $\frac{u_{k,N}}{\|u_{k,N}\|_{L^2(\Omega)}}.$

To be continued...

References

[1] Lawrence C. Evans. Partial differential equations. American Mathematical Society, Providence, R.I., 2010.