# Unbounded operators in Hilbert spaces and EPDEs with boundary conditions 

Junrong Yan

August 29, 2022

## 1 Basic Settings

Let $\left(\mathcal{H}_{1},\langle\cdot, \cdot\rangle_{\mathcal{H}_{1}}\right),\left(\mathcal{H}_{2},\langle\cdot, \cdot\rangle_{\mathcal{H}_{2}}\right)$ be Hilbert spacces. We say $(\mathrm{T}, \mathcal{D}(\mathrm{T})), \mathrm{T}: \mathcal{H}_{1} \mapsto \mathcal{H}_{2}$ is unbounded linear operator, if restricted in a dense subspace $\mathcal{D}(T) \subset \mathcal{H}_{1}, T$ is linear. Moreover, we say $\mathcal{D}(T)$ is the domain of $T$.

Example 1. Let $\mathcal{H}_{1}=\mathcal{H}_{2}=L^{2}(\mathbb{R})$, $\mathrm{T}=\frac{d}{d x}, \mathcal{D}(\mathrm{~T})=C_{c}^{\infty}(\mathbb{R})$. Then $(\mathrm{T}, \mathcal{D}(\mathrm{T}))$ is an unbounded operator.

Let $\left(\mathrm{T}_{1}, \mathcal{D}\left(\mathrm{~T}_{1}\right)\right)$ and $\left(\mathrm{T}_{2}, \mathcal{D}\left(\mathrm{~T}_{2}\right)\right)\left(T_{i}: \mathcal{H}_{1} \mapsto \mathcal{H}_{2}\right)$ be unbounded operators, if $\mathcal{D}\left(\mathrm{T}_{1}\right) \subset \mathcal{D}\left(\mathrm{T}_{2}\right)$ and $\left.\mathrm{T}_{2}\right|_{\mathcal{D}\left(\mathrm{T}_{1}\right)}=\mathrm{T}_{1}$, we say $\left(\mathrm{T}_{2}, \mathcal{D}\left(\mathrm{~T}_{2}\right)\right)$ is an extension of $\left(\mathrm{T}_{1}, \mathcal{D}\left(\mathrm{~T}_{1}\right)\right)$, denoted by $\left(\mathrm{T}_{1}, \mathcal{D}\left(\mathrm{~T}_{1}\right)\right)<$ $\left(\mathrm{T}_{2}, \mathcal{D}\left(\mathrm{~T}_{2}\right)\right)$.

Remark 1. If there exists $M>0$, such that $\forall x \in \mathcal{D}(\mathrm{~T}),\|\mathrm{T} x\| \leq M\|x\|$, Then T could be extended to a linear operator, with domain $\mathcal{H}_{1}$.

Next, we always assume $(\mathrm{T}, \mathcal{D}(\mathrm{T}))$ is closable: If $\left\{x_{n}\right\}_{n=1}^{\infty} \subset \mathcal{D}(\mathrm{T})$, such that $\lim _{n \rightarrow \infty} x_{n}=0$, and $\lim _{n \rightarrow \infty} \mathrm{~T} x_{n}$ exists, then we must have $\lim _{n \rightarrow \infty} \mathrm{~T} x_{n}=0$.

Remark 2. 1. The unbounded operator in Example 1 is closable: let $f_{0} \in C_{c}^{\infty}(\mathbb{R}) \rightarrow 0$ in $L^{2}(\mathbb{R})$, and $f_{n}^{\prime} \rightarrow g$ for some $g \in L^{2}(\mathbb{R})$. If $g \neq 0 \in L^{2}(\mathbb{R})$, since $C_{c}^{\infty}(\mathbb{R})$ is dense in $L^{2}(\mathbb{R})$, there exists $h \in C_{c}^{\infty}(\mathbb{R})$, s.t. $\langle g, h\rangle_{L^{2}(\mathbb{R})} \neq 0$. But

$$
\langle g, h\rangle_{L^{2}(\mathbb{R})}=\lim _{n \rightarrow \infty}\left\langle f_{n}^{\prime}, h\right\rangle_{L^{2}(\mathbb{R})}=-\lim _{n \rightarrow \infty}\left\langle f_{n}, h^{\prime}\right\rangle_{L^{2}(\mathbb{R})}=0
$$

As a result, we must have $g=0$.
2. Let $\mathcal{H}_{1}=L^{2}(\mathbb{R}), \mathcal{H}_{2}=\mathbb{R}, \mathcal{D}=C_{c}(\mathbb{R}) \subset \mathcal{H}$. Consider the unbounded operator $(\mathrm{T}, \mathcal{D})$, $f \rightarrow f(0)$. Then $(\mathrm{T}, \mathcal{D})$ is not closable: Let

$$
f_{n}(x)= \begin{cases}n(x+1 / n), & \text { if } x \in(-1 / n, 0)  \tag{1}\\ n(1 / n-x), & \text { if } x \in(0,1 / n) \\ 0, \text { otherwise } .\end{cases}
$$

Then $f_{n} \in C_{c}(\mathbb{R})$ and $f_{n} \rightarrow 0$ in $L^{2}(\mathbb{R})$. Moreover, $f_{n}(0)=1$, hence $\lim _{n \rightarrow \infty} T f_{n}=1 \neq 0$, which means T is not closable.

Definition 1. We say that $(\mathrm{T}, \mathcal{D}(\mathrm{T}))$ is a close operator, if for a Cauchy Sequence $\left\{x_{n}\right\}_{n=1}^{\infty} \subset$ $\mathcal{H}_{1}$ such that $\left\{\mathrm{T} x_{n}\right\} \subset \mathcal{H}_{2}$ is also a Cauchy sequence, then $x:=\lim _{n \rightarrow \infty} x_{n} \in \mathcal{D}(\mathrm{~T})$, and $\mathrm{T} x=$ $\lim _{n \rightarrow \infty} \mathrm{~T} x_{n}$.

Definition 2 (close extension). We say $\left(\mathrm{T}_{1}, \mathcal{D}\left(\mathrm{~T}_{1}\right)\right)$ is a close extension of $\left(\mathrm{T}_{0}, \mathcal{D}\left(\mathrm{~T}_{0}\right)\right)$, if

1. $\left(\mathrm{T}_{1}, \mathcal{D}_{1}\right)$ is closed;
2. $\mathcal{D}\left(\mathrm{T}_{0}\right) \subset \mathcal{D}\left(\mathrm{T}_{1}\right) ;$
3. $\left.\mathrm{T}_{1}\right|_{\mathcal{D}\left(\mathrm{T}_{0}\right)}=\mathrm{T}_{0}$.

Let $(\mathrm{T}, \mathcal{D}(\mathrm{T}))$ be an unbounded operator. For $x, y \in \mathcal{D}(\mathrm{~T})$, define the inner product $\langle\cdot, \cdot\rangle_{\mathrm{T}}$ :

$$
\langle x, y\rangle_{\mathrm{T}}:=\langle x, y\rangle_{\mathcal{H}_{1}}+\langle\mathrm{T} x, \mathrm{~T} y\rangle_{\mathcal{H}_{2}} .
$$

It's easy to check that if $(\mathrm{T}, \mathcal{D}(\mathrm{T}))$ is closed, then $\mathcal{D}(\mathrm{T})$ is complete with respect to the norm $\|\cdot\|_{\mathrm{T}}$.
Let $\mathcal{D}\left(\overline{\mathrm{T}}_{\text {min }}\right)$ be the completion of $\mathcal{D}(\mathrm{T})$ under the norm $\|\cdot\|_{\mathrm{T}}$. Since $\|x\|_{\mathcal{H}_{1}} \leq\|x\|_{\mathrm{T}}, \forall x \in \mathcal{D}(\mathrm{~T})$, we can think $\mathcal{D}\left(\overline{\mathrm{T}}_{\text {min }}\right)$ as a dense subspace of $\mathcal{H}_{1} . \forall x \in \mathcal{D}\left(\overline{\mathrm{~T}}_{\text {min }}\right)$, since T is closable, define $\overline{\mathrm{T}}_{\text {min }} x=\lim _{n \rightarrow \infty} \mathrm{~T} x_{n}$, where $\lim _{n \rightarrow \infty}\left\|x_{n}-x\right\|_{\mathrm{T}}=0$. Then one can show that $\left(\overline{\mathrm{T}}_{\text {min }}, \mathcal{D}\left(\overline{\mathrm{T}}_{\text {min }}\right)\right)$ is a close extension of $(\mathrm{T}, \mathcal{D}(\mathrm{T}))$, called minimal extension of $(\mathrm{T}, \mathcal{D}(T))$. Moreover, if $\left(\mathrm{T}_{1}, \mathcal{D}\left(\mathrm{~T}_{1}\right)\right)$ is another close extension of $(\mathrm{T}, \mathcal{D}(\mathrm{T}))$, then $\left(\overline{\mathrm{T}}_{\text {min }}, \mathcal{D}\left(\overline{\mathrm{T}}_{\text {min }}\right)\right)<\left(\mathrm{T}_{1}, \mathcal{D}\left(\mathrm{~T}_{1}\right)\right)$.

Example 2. 1. Let $\Omega$ be a bouned domain in $\mathbb{R}^{n}$ with smooth boundary. Let $\mathcal{H}_{1}=L^{2}(\Omega)$, $\mathcal{H}_{2}=\underbrace{L^{2}(\Omega) \oplus \ldots \oplus L^{2}(\Omega)}_{n \text { copies of } L^{2}(\Omega)}, \mathcal{D}=C_{c}^{\infty}(\Omega)$. Define T: $\mathcal{H}_{1} \mapsto \mathcal{H}_{2}:$

$$
\phi \rightarrow\left(\frac{\partial}{\partial x_{1}} \phi, \ldots, \frac{\partial}{\partial x_{n}} \phi\right), \forall \phi \in C_{c}^{\infty}
$$

Then $\mathcal{D}\left(\overline{\mathrm{T}}_{\text {min }}\right)$ is the Sobolev space $W_{0}^{1,2}(\Omega), T$ is the weak derivatives (See page 245 in [1] for more details).
2. Now let

$$
\mathcal{D}=\left\{\phi \in C^{\infty}(\Omega): \phi \text { and } \partial_{x_{i}} \phi \text { are } L^{2} \text {-integable }\right\} .
$$

Then $\mathcal{D}\left(\overline{\mathrm{T}}_{\text {min }}\right)$ is the Sobolev space $W^{1,2}(\Omega)$ (See Theorem 2 in page 251 of [1]).

## 2 Adjoint operator

Definition 3 (Formal adjoint operator). We say $(\mathrm{S}, \mathcal{D}(\mathrm{S})$ ) is a formal adjoint operator of $(\mathrm{T}, \mathcal{D}(\mathrm{T}))$, if $\forall x \in \mathcal{D}(\mathrm{~T}), y \in \mathcal{D}(\mathrm{~S})$,

$$
\langle\mathrm{T} x, y\rangle_{\mathcal{H}_{2}}=\langle x, \mathrm{~S} y\rangle_{\mathcal{H}_{1}} .
$$

If $\mathcal{H}_{1}=\mathcal{H}_{2}=\mathcal{H}$ and $(\mathrm{S}, \mathcal{D}(\mathrm{S}))=(\mathrm{T}, \mathcal{D}(\mathrm{T}))$, then we say $(\mathrm{T}, \mathcal{D}(\mathrm{T}))$ is symmetric.
It could be check easily that if $(\mathrm{T}, \mathcal{D}(\mathrm{T}))$ has a formal adjoint operator $(\mathrm{S}, \mathcal{D}(\mathrm{S}))$, then $(\mathrm{T}, \mathcal{D}(\mathrm{T}))$ is closable: let $x_{n} \in \mathcal{D}(\mathrm{~T})$, such that $x_{n} \rightarrow 0, \mathrm{~T} x_{n} \rightarrow g$. If $g \neq 0$, one can find $h \in D(\mathrm{~S})$, such that $(g, h) \neq 0$. But

$$
\langle g, h\rangle_{\mathcal{H}_{2}}=\lim _{n \rightarrow \infty}\left\langle T x_{n}, h\right\rangle_{\mathcal{H}_{2}}=\lim _{n \rightarrow \infty}\left\langle x_{n}, S h\right\rangle_{\mathcal{H}_{1}}=0
$$

which is a contradiction.
In fact, if $(\mathrm{T}, \mathcal{D}(\mathrm{T}))$ is closable, then it has a special formal adjoint operator, called adjoint operator:

Definition 4 (Adjoint Operator). We say that $\left(\mathrm{T}^{*}, \mathcal{D}\left(\mathrm{~T}^{*}\right)\right.$ ) is the adjont operator of $(\mathrm{T}, D(\mathrm{~T}))$, if $\left(\mathrm{T}^{*}, \mathcal{D}\left(\mathrm{~T}^{*}\right)\right)$ is a formal adjoint operator of $(\mathrm{T}, \mathcal{D}(\mathrm{T}))$, and
$\mathcal{D}\left(\mathrm{T}^{*}\right):=\left\{y \in \mathcal{H}_{2}:\right.$ there exists $M_{y}>0$ such that $\left.\left|\langle\mathrm{T} x, y\rangle_{\mathcal{H}_{2}}\right| \leq M_{y}\|x\|_{\mathcal{H}_{1}}, \forall x \in \mathcal{D}(\mathrm{~T})\right\}$.
If $\mathcal{H}_{1}=\mathcal{H}_{2},\left(\mathrm{~T}^{*}, \mathcal{D}\left(\mathrm{~T}^{*}\right)\right)=(\mathrm{T}, \mathcal{D}(\mathrm{T}))$, then we say $(\mathrm{T}, \mathcal{D}(\mathrm{T}))$ is self-adjoint.
It's easy to check that if $\left(\mathrm{T}_{1}, \mathcal{D}\left(\mathrm{~T}_{1}\right)\right)<\left(\mathrm{T}_{2}, \mathcal{D}\left(\mathrm{~T}_{2}\right)\right)$, then

$$
\left(\mathrm{T}_{2}^{*}, \mathcal{D}\left(\mathrm{~T}_{2}^{*}\right)\right)<\left(\mathrm{T}_{1}^{*}, \mathcal{D}\left(\mathrm{~T}_{1}^{*}\right)\right)
$$

Moreover, it follows from the definition that $\left(\mathrm{T}^{*}, \mathcal{D}\left(\mathrm{~T}^{*}\right)\right)$ is closed: let $\left\{y_{n}\right\} \subset \mathcal{D}\left(\mathrm{T}^{*}\right)$ be a Cauchy sequence, s.t. $\mathrm{T}^{*}\left(y_{n}\right)$ is a Cauchy sequence in $\mathcal{H}_{1}$. Let $y=\lim _{n \rightarrow \infty} y_{n} \in \mathcal{H}_{2}, z=\lim _{n \rightarrow \infty} \mathrm{~T}^{*}\left(y_{n}\right) \in$ $\mathcal{H}_{1}$, then for all $x \in D(\mathrm{~T})$,

$$
\left|\langle\mathrm{T} x, y\rangle_{\mathcal{H}_{2}}\right|=\lim _{n \rightarrow \infty}\left|\left\langle\mathrm{~T} x, y_{n}\right\rangle_{\mathcal{H}_{2}}\right|=\lim _{n \rightarrow \infty}\left|\left\langle x, \mathrm{~T}^{*} y_{n}\right\rangle_{\mathcal{H}_{1}}\right|=\left|\langle x, z\rangle_{\mathcal{H}_{1}}\right| \leq\|z\|_{\mathcal{H}_{1}}\|x\|_{\mathcal{H}_{1}}
$$

Hence, one can see that $y \in \mathcal{D}\left(\mathrm{~T}^{*}\right)$, moreover $T^{*} y=z$.
In fact, one has $\left(\mathrm{T}^{* *}, \mathcal{D}\left(\mathrm{~T}^{* *}\right)\right)=\left(\overline{\mathrm{T}}_{\text {min }}, \mathcal{D}\left(\overline{\mathrm{T}}_{\text {min }}\right)\right)$.
If $(\mathrm{S}, \mathcal{D}(\mathrm{S}))$ is a formal adjoint operator of $(\mathrm{T}, \mathcal{D}(\mathrm{T}))$ then $\left(\mathrm{S}^{*}, \mathcal{D}\left(\mathrm{~S}^{*}\right)\right)$ is a close extension of ( $\mathrm{T}, \mathcal{D}(\mathrm{T})$ ).

Example 3. Let $\Omega$ be a bounded domain in $\mathbb{R}^{n}$ with smooth boundary. Let $\mathcal{H}_{1}=L^{2}(\Omega)$, $\mathcal{H}_{2}=$ $\underbrace{L^{2}(\Omega) \oplus \ldots \oplus L^{2}(\Omega)}_{n \text { copies of } L^{2}(\Omega)}, \mathcal{D}=C_{c}^{\infty}(\Omega)$. Set $\mathrm{T}: \mathcal{H}_{1} \mapsto \mathcal{H}_{2}$ :

$$
\phi \rightarrow\left(\frac{\partial}{\partial x_{1}} \phi, \ldots, \frac{\partial}{\partial x_{n}} \phi\right), \forall \phi \in C_{c}^{\infty}
$$

Set $\mathcal{D}^{n}:=\underbrace{C_{c}^{\infty}(\Omega) \oplus \ldots \oplus C_{c}^{\infty}(\Omega)}_{n \text { copies of } C_{c}^{\infty}(\Omega)}$, and $\mathrm{S}: \mathcal{H}_{2} \mapsto \mathcal{H}_{1}$,

$$
\left(\phi_{1}, \ldots \phi_{n}\right) \rightarrow-\sum_{k=1}^{n} \frac{\partial}{\partial x_{k}} \phi_{k}, \phi_{k} \in C_{c}^{\infty}(\Omega)
$$

Then $\left(\mathrm{S}, \mathcal{D}^{n}\right)$ is a formal adjoint operator of $(\mathrm{T}, \mathcal{D})$. Moreover, it follows from the definition of Sobolev space that $\mathcal{D}\left(\mathrm{S}^{*}\right)=W^{1,2}(\Omega)$. Here we give another desciption of Sobolev space $W^{1,2}(\Omega)$.

## 3 Friedrichs Extension and Essential self-adjoint

Let $(\mathrm{T}, \mathcal{D}(\mathrm{T}))$ be a nonnegative symmetric operator, that is, for all $\phi \in \mathcal{D}(\mathrm{T})$,

$$
\langle T \phi, \phi\rangle_{\mathcal{H}}=\langle\phi, T \phi\rangle_{\mathcal{H}} \geq 0
$$

Then, on $\mathcal{D}(T)$,

$$
\langle\phi, \psi\rangle_{\mathrm{T}^{1 / 2}}:=\langle\phi, \psi\rangle_{\mathcal{H}}+\langle\phi, T \psi\rangle_{\mathcal{H}}, \phi, \psi \in \mathcal{H}
$$

defines an inner product. Let $\mathcal{H}_{1}$ be the compection of $\mathcal{D}(\mathrm{T})$ under the norm $\|\cdot\|_{T^{1 / 2}}$ then $\mathcal{H}_{1}$ could be think as a subspace of $\mathcal{H}$. Set

$$
\mathcal{D}^{F}:=\left\{\phi \in \mathcal{H}_{1}:\langle\eta, \phi\rangle_{H}+\langle T \eta, \phi\rangle_{\mathcal{H}} \leq M_{\phi}\|\eta\|_{\mathcal{H}}(\forall \eta \in \mathcal{D}(\mathrm{T})) \text { for some } M_{\phi}>0 .\right\}
$$

By Riesz representation theorem, there exists $u \in \mathcal{H}$, such that

$$
\begin{equation*}
\langle\eta, \phi\rangle_{H}+\langle T \eta, \phi\rangle_{\mathcal{H}}=\langle\eta, u\rangle_{\mathcal{H}} \tag{2}
\end{equation*}
$$

Now set $\mathrm{T}^{F}(\phi)=u-\phi$. We called $\left(\mathrm{T}^{F}, \mathcal{D}^{F}\right)$ be Friedrichs extension of $(\mathrm{T}, \mathcal{D}(T))$. One can check that $\left(\mathrm{T}^{F}, \mathcal{D}^{F}\right)$ is a closed extension of $(\mathrm{T}, \mathcal{D}(\mathrm{T}))$, and is self-adjoint.

Proposition 1. Let $\Omega$ be a bounded domain in $\mathbb{R}^{n}$ with smooth boundary. $\mathcal{H}_{1}=\mathcal{H}_{2}=L^{2}\left(\mathbb{R}^{n}\right)$, $\mathcal{D}=C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$, then the operator $\mathrm{T}=\Delta, \phi \rightarrow \Delta \phi:=-\sum_{i} \partial_{i}^{2} \phi$ is symmetric. Then, $u \in \mathcal{D}^{F}$ iff $u \in W_{0}^{1,2}(\Omega)$ solve EPDEs below weakly for some $g \in L^{2}\left(\mathbb{R}^{n}\right)$ :

$$
\left\{\begin{array}{l}
\Delta u=g, \text { in } \Omega  \tag{3}\\
u=0, \text { on } \partial \Omega
\end{array}\right.
$$

i.e., for all $v \in W_{0}^{1,2}(\Omega)$,

$$
\int_{\Omega} \nabla u \cdot \nabla v=\int_{\Omega} h v
$$

Futhermore, $\mathrm{T}^{F} u=g$.
Next, let $\mathcal{D}^{N}=\left\{u \in C^{\infty}(\bar{\Omega}): \partial_{\nu} u=0\right.$ on $\left.\Omega\right\}$ be the domain of $\mathrm{T}^{N}=\Delta$, then $u \in\left(\mathcal{D}^{N}\right)^{F}$ iff $u \in W^{1,2}(\Omega)$ solves EPDEs below weakly for some $h \in L^{2}\left(\mathbb{R}^{n}\right)$ :

$$
\left\{\begin{array}{l}
\Delta u=h, \text { in } \Omega  \tag{4}\\
\partial_{\nu} u=0, \text { on } \partial \Omega
\end{array}\right.
$$

i.e., for all $v \in W^{1,2}(\Omega)$,

$$
\int_{\Omega} \nabla u \cdot \nabla v=\int_{\Omega} h v
$$

Furthermore, $\left(T^{F}\right)^{*} u=g$.
Here $\nu$ is the normal direction on $\partial \Omega$.
Proof. If $u \in \mathcal{D}^{F}$, then there exists $g \in L^{2}(\Omega)$, s.t. for any $\eta \in C_{c}^{\infty}(\Omega)$

$$
\langle\Delta \eta, u\rangle_{L^{2}(\Omega)}=\langle\eta, g-u\rangle_{L^{2}(\Omega)}
$$

While integration by parts shows that $\langle T \eta, u\rangle_{L^{2}(\Omega)}=\int_{\Omega} \nabla \eta \cdot \nabla u=\int_{\Omega} \eta(g-u)$. Since $C_{c}^{\infty}(\Omega)$ is dense in $W_{0}^{1,2}(\Omega)$, one can see that $u$ solves

$$
\left\{\begin{array}{l}
\Delta u=g-u, \text { in } \Omega  \tag{5}\\
u=0, \text { on } \partial \Omega .
\end{array}\right.
$$

On the other hand, if $u \in W_{0}^{1,2}(\Omega)$ solves (3) for some $g$, integation by parts shows that

$$
\langle\Delta \eta, u\rangle_{L^{2}(\Omega)}+\langle\eta, u\rangle_{L^{2}(\Omega)} \leq\left(\|g\|_{L^{2}(\Omega)}+\|u\|_{L^{2}(\Omega)}\right)\|\eta\|_{L^{2}(\Omega)}
$$

for all $u \in C_{c}^{\infty}(\Omega)$. Hence $u \in \mathcal{D}^{F}$
For Neumann's case, the proof is similar. The only somewhat nontrivial part is to show that $\mathcal{D}^{N}$ is dense in $W^{1,2}(\Omega)$ (w.r.t. to the norm $\|\cdot\|_{W^{1,2}(\Omega)}(\Omega)$ ): First, since $C^{\infty}(\bar{\Omega})$ is dense in $W^{1,2}(\Omega)$, for $u \in \mathcal{D}^{N}$, any $\epsilon>0$, there exists $v \in C^{\infty}(\bar{\Omega})$, s.t. $\|u-v\|_{W^{1,2}(\Omega)}<\epsilon / 2$. Fix $\eta \in C_{c}^{\infty}(\mathbb{R})$, s.t. $\operatorname{supp} \eta \supset(-1,1),\left.\eta\right|_{(-1 / 2,1 / 2)} \equiv 1$. Set $M=\int_{\partial \Omega}\left|\partial_{\nu} v\right|^{2}+\int_{\partial \Omega}\left|\nabla^{\partial \Omega} \partial_{\nu} v\right|^{2}$. Let $d(x):=\operatorname{dist}(x, \Omega)$, $w(x)=d(x) \eta(N M d(x)) \partial_{\nu} v$, then when $N>0$ is big, $\|w\|_{W^{1,2}(\Omega)} \leq \frac{C}{N}$ for some $C>0$ depending only on $\Omega$. Furthermore, $\partial_{\nu} w=\partial_{\nu} v$. Then for $N$ is big enough, $\|u-(v+w)\| \leq \epsilon$, and $\partial_{\nu}(v+w)=0$. Hence, $\mathcal{D}^{N}$ is dense in $W^{1,2}(\Omega)$.

Moreover, one has
Theorem 1. When $\Omega \subset \mathbb{R}^{n}$ is a bounded domain with smooth boundary, then $\mathrm{T}^{F}$ (or $\left.\left(\mathrm{T}^{N}\right)^{F}\right)$ has discrete spectrum $0<\lambda_{1} \leq \lambda_{2} \leq \cdots \leq \lambda_{k} \cdots$ (or respectively, $0 \leq \lambda_{1, N} \leq \lambda_{2, N} \leq \cdots \leq \lambda_{k, N} \cdots$ ). Moreover, their eigenfunctions $\left\{e_{k}\right\}$ (or $\left\{e_{k, N}\right\}$ ) respectively) forms an orthonormal basis of $L^{2}(\Omega)$. Furthermore, $\lim _{k \rightarrow \infty} \lambda_{k}=\infty$ (or $\lim _{k \rightarrow \infty} \lambda_{k, N}=\infty$ respectively).

## 4 min-max principle and EPDEs with boundary conditions

In this section, we would like to present another description of eigenvalues of Laplacian operator. For any vector space $L$, let $\Phi_{k}(L)$ denote the set of k -dimensional vector spaces.

Let $\Omega$ be a bounded domain in $\mathbb{R}^{n}$ with smooth boundary.
For $u \in W_{0}^{1,2}(\Omega)$ or $u \in W^{1,2}(\Omega)$, consider the fuctional

$$
\mathcal{F}(u)=\frac{\int_{\Omega}|\nabla u|^{2}}{|u|^{2}}
$$

Theorem 2. Let $l_{k}=\inf _{V \in \Phi_{k}\left(W_{0}^{1,2}(\Omega)\right)} \sup _{u \in V} \mathcal{F}(u)$, then there exists $0 \neq u_{k} \in W_{0}^{1,2}(\Omega)$ solves

$$
\left\{\begin{array}{l}
\Delta u_{k}=l_{k} u_{k}, \text { in } \Omega  \tag{6}\\
u_{k}=0, \text { on } \partial \Omega
\end{array}\right.
$$

weakly. That is, for any $w \in W_{0}^{1,2}(\Omega)$,

$$
\int_{\Omega} \nabla u_{k} \cdot \nabla w=l_{k} \int_{\Omega} u_{k} w
$$

Moreover, $u_{k}$ is orthogonal to $\left\{u_{j}\right\}_{j=1}^{k-1}$.
Proof. For simplicity, we prove the case of $k=1$ only.
Let $l_{1}=\inf _{0 \neq u \in W_{0}^{1,2}(\Omega)} \mathcal{F}(u)$. Let $w_{n} \in W_{0}^{1,2}(\Omega)$ such that $\left\|w_{n}\right\|_{L^{2}(\Omega)}=1 \mathcal{F}\left(w_{n}\right) \rightarrow \lambda$. Then $\left\|w_{n}\right\|_{W^{1,2}(\Omega)} \leq C$ for some $C>0$. Hence, since $W^{1,2}(\Omega) \hookrightarrow L^{2}(\Omega)$ compactly, we may assume that
$w_{n} \rightarrow u_{1}$ for some $u_{1} \in L^{2}(\Omega)$. Moreover, since $\left\|\nabla w_{n}\right\|_{L^{2}(\Omega)} \leq C$, we may assume that $\nabla w_{n} \rightarrow \psi$ in weak $L^{2}(\Omega)$-topology.

Then for $\rho \in C_{c}^{\infty}(\Omega)$,

$$
\int_{\Omega} \psi \rho=\lim _{n \rightarrow \infty} \int_{\Omega} \nabla w_{n} \rho=-\lim _{n \rightarrow \infty} \int_{\Omega} w_{n} \nabla \rho=-\int_{\Omega} u_{1} \nabla \rho
$$

Hence, $u_{1}$ has weak derivative $\psi$. Hence $u_{1} \in W_{0}^{1,2}(\Omega)$.
Next, we would like to show that $u_{1}$ satisfies the EPDEs (6) weakly.
Fix $0 \neq \rho \in W_{0}^{1,2}(\Omega), u_{t}=u_{1}+t \rho$, then we must have

$$
\left.\frac{d}{d t} \mathcal{F}\left(u_{t}\right)\right|_{t=0}=0
$$

Which, by a straightforward computation, implies that

$$
\int_{\Omega} \nabla u \nabla \rho=l_{1} \int_{\Omega} u \rho
$$

Similarly,
Theorem 3. Let $l_{k, N}=\inf _{V \in \Phi_{k}\left(W^{1,2}(\Omega)\right)} \sup _{u \in V} \mathcal{F}(u)$, then there exists $0 \neq u_{k, N} \in W^{1,2}(\Omega)$ solves

$$
\left\{\begin{array}{l}
\Delta u_{k, N}=l_{k, N} u_{k, N}, \text { in } \Omega  \tag{7}\\
\partial_{\nu} u_{k, N}=0, \text { on } \partial \Omega
\end{array}\right.
$$

weakly. That is, for any $w \in W^{1,2}(\Omega)$,

$$
\int_{\Omega} \nabla u_{k} \cdot \nabla w=l_{k} \int_{\Omega} u_{k} w
$$

Moreover, $u_{k, N}$ is orthogonal to $\left\{u_{j, N}\right\}_{j=1}^{k-1}$.
Remark 3. In fact, $\lambda_{k}=l_{k}$ and $\lambda_{k, N}=l_{k, N}$. Moreover, one can take $e_{k}=\frac{u_{k}}{\left\|u_{k}\right\|_{L^{2}(\Omega)}}$ and $e_{k, N}=$ $\frac{u_{k, N}}{\left\|u_{k, N}\right\|_{L^{2}(\Omega)}}$.

To be continued...

## References

[1] Lawrence C. Evans. Partial differential equations. American Mathematical Society, Providence, R.I., 2010.

