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1 Basic Settings

Let (Hi, (-, ), ),(Ha, (-, -)n, )be Hilbert spacces. We say (T,D(T)), T : H1 — Hsy is unbounded
linear operator, if restricted in a dense subspace D(T) C H;, T is linear. Moreover, we say D(T) is
the domain of T.

Example 1. Let Hy = Ho = L*(R), T = &L D(T) = C*(R). Then (T,D(T)) is an unbounded
operator.

Let (T1,D(Ty)) and (T2, D(T2)) (T; : H1 — H2) be unbounded operators, if D(T1) C D(Ts)
and Ty [p(r,) = T1, we say (T2, D(T2)) is an extension of (T1,D(T1)), denoted by (T1,D(Ty)) <
(T2, D(Ty)).

Remark 1. If there exists M > 0, such that Vo € D(T), || Tz| < M|jz||, Then T could be extended
to a linear operator, with domain H;.

Next, we always assume (T,D(T)) is closable: If {x,}>2; C D(T), such that lim, . 2, = 0,
and lim,,_,., T z,, exists, then we must have lim,,_ ., T z,, = 0.

Remark 2. 1. The unbounded operator in Example 1 is closable: let fo € C°(R) — 0 in L*(R),
and f! — g for some g € L*(R). If g # 0 € L*(R), since C°(R) is dense in L*(R), there
exists h € C°(R), s.t. (9,h)r2mr) # 0. But

<97h>L2(R) = nILTI;O<frlL,h>L2(R) = - <fnah/>L2(R) =0.

im
n—oo
As a result, we must have g = 0.

2. Let Hy = L*(R),Hy = R, D = C.(R) C H. Consider the unbounded operator (T,D),
f— f(0). Then (T,D) is not closable: Let

n(z+1/n), if x € (—1/n,0)
fa(z) =4 n(l/n—x), if v € (0,1/n) (1)

0, otherwise.

Then f, € C.(R) and f, — 0 in L?>(R). Moreover, f,(0) = 1, hence lim, oo T'f, =1 # 0,

which means T is not closable.



Definition 1. We say that (T, D(T)) is a close operator, if for a Cauchy Sequence {x,}>; C
Hisuch that {Tx,} C Ha is also a Cauchy sequence, then x := lim, o0 , € D(T), and Tx =
lim,, oo T ).

Definition 2 (close extension). We say (T1,D(T1)) is a close extension of (To, D(Ty)), if
1. (T1,D) is closed;
2. D(Ty) C D(T4);
3. Ti lp(ry) = To-
Let (T,D(T)) be an unbounded operator. For z,y € D(T), define the inner product (-, -)7:

<xvy>T = <x7y>7'[1 + <TxaTy>H2-

It’s easy to check that if (T, D(T)) is closed, then D(T) is complete with respect to the norm || - ||T.

Let D(T,nin) be the completion of D(T) under the norm || -||t. Since ||z, < ||z|T, Ve € D(T),
we can think D(T,,;,) as a dense subspace of Hi. Vax € D(T,n), since T is closable, define
Tonin® = lim, oo T 2, where lim,, o ||, — 2|[7 = 0. Then one can show that (T,uin, D(Thin))
is a close extension of (T,D(T)), called minimal extension of (T, D(T)). Moreover, if (T, D(Ty))

is another close extension of (T,D(T)), then (Tpin, D(Tmin)) < (T1,D(T1)).

Example 2. 1. Let Q be a bouned domain in R™ with smooth boundary. Let H1 = L*(Q),
Ho = L*(Q) @ ... L*(Q), D = C(Q). Define T :Hy s Ha:

n copies of L?(Q)

) ) .
aixlqba a3} 7¢)vv¢ € C1(: .

¢ = ( oz,

Then D(Tynin) is the Sobolev space Wo2(), T is the weak derivatives (See page 245 in [1]
for more details).

2. Now let
D={pcC>®): ¢ and d,,¢ are L*-integable}.

Then D(Tpmin) is the Sobolev space W12(Q) (See Theorem 2 in page 251 of [1]).

2 Adjoint operator

Definition 3 (Formal adjoint operator). We say (S, D(S)) is a formal adjoint operator of (T, D(T)),
if Vo € D(T),y € D(S),
<T$, y>7—£2 - <1'7 S y>7—ll'

If H1=Ho =H and (S,D(S)) = (T, D(T)), then we say (T, D(T)) is symmetric.

It could be check easily that if (T, D(T)) has a formal adjoint operator (S, D(S)), then (T, D(T))
is closable: let z,, € D(T), such that z,, — 0, Ta,, — g. If g # 0, one can find h € D(S), such that

(g,h) # 0. But
(9, h)p, = lim (Txp, h)yy, = lim {(x,,Sh)y, =0,

n— oo n— 00



which is a contradiction.
In fact, if (T,D(T)) is closable, then it has a special formal adjoint operator, called adjoint
operator:

Definition 4 (Adjoint Operator). We say that (T*,D(T™)) is the adjont operator of (T, D(T)), if
(T*,D(T™)) is a formal adjoint operator of (T,D(T)), and

D(T*) :={y € Ha : there exists M, > Osuch that (T z,y)n,| < My||x||u,, Yz € D(T)}.
If H1 = Ha, (T*,D(T*)) = (T, D(T)), then we say (T, D(T)) is self-adjoint.
It’s easy to check that if (T1,D(Ty)) < (T2, D(T2)), then
(T3, D(T5)) < (T}, D(T])).

Moreover, it follows from the definition that (T*, D(T")) is closed: let {y,} C D(T*) be a Cauchy
sequence, s.t. T*(y,) is a Cauchy sequence in H1. Let y = lim,, o0 Yn € Ho, 2 = lim,, 00 T"(ys) €
H1, then for all z € D(T),

Tz, y)a,| = Hm (T, yn)a,| = Hm (2, T yn)a, | = (2, 2)30 | < 2l 2]l -
n—oo n—oo

Hence, one can see that y € D(T"), moreover T*y = 2.
In fact, one has (T**, D(T*)) = (Tomin, D(Tmin))-
If (S,D(9)) is a formal adjoint operator of (T,D(T)) then (S*,D(S¥)) is a close extension of

(T, D(T)).

Example 3. Let Q be a bounded domain in R™ with smooth boundary. Let H; = L*(Q), Ho =
LY Q)@ ...0L*(Q), D=C>®(Q). Set T : Hi s Ho:

n copies of L*(Q)

0 0

a—xlqb, oy ),V € C°.

6 (5

Set D™ :=C(Q) & ... C(Q), and S : Hay — Hy,

n copies of C° ()

n

(61, dn) = — a%mm e 0(Q),

k=1

Then (S,D™) is a formal adjoint operator of (T, D). Moreover, it follows from the definition of
Sobolev space that D(S*) = W12(Q). Here we give another desciption of Sobolev space W12(Q).

3 Friedrichs Extension and Essential self-adjoint

Let (T,D(T)) be a nonnegative symmetric operator, that is, for all ¢ € D(T),

(T'g,p)1 = (&, Th) > 0.



Then, on D(T),
(@, )pre i= (b, V) + (6, TV}, 6, €H

defines an inner product. Let H; be the compection of D(T) under the norm || - ||p1/2then H; could
be think as a subspace of H. Set

D = {6 € Hy : (0.0 + (Tn. @) < My|lnlln(¥n € D(T)) for some M, > 0.}

By Riesz representation theorem, there exists u € H, such that

(n, ) e + (Tn, o) = (n, u)n. (2)

Now set TF (¢) = u — ¢. We called (T*, DF) be Friedrichs extension of (T,D(T)). One can check
that (T¥, D) is a closed extension of (T, D(T)), and is self-adjoint.

Proposition 1. Let Q be a bounded domain in R™ with smooth boundary. Hi = He = L*(R"),
D = CX(R"), then the operator T = A, ¢ — A¢p := —>_,02¢ is symmetric. Then, u € DI iff
u e Wy?(Q) solve EPDEs below weakly for some g € L*(R™) :

Au =g, in Q;
{ (3)

u =0, on 09,

i.e., forallv € Wol’Q(Q),
/ Vu - Vv = / hv.
Q Q
Futhermore, TF u = g.

Nezt, let DV = {u € C°(Q) : dyu = 0 on Q} be the domain of TN = A, then u € (DN)F iff
u € WH2(Q) solves EPDEs below weakly for some h € L*(R"):

Au = h, in Q;
{ (4)

dyu =0, on 99,
i.e., for all v € W12(Q),

/ Vu- Vv = / hv.
Q Q
Furthermore, (TF)*u = g.

Here v is the normal direction on 0X).

Proof. If u € DF'| then there exists g € L%(Q), s.t. for any n € C°(Q)

(An,u)p20) = (1,9 — u)2(q)-

While integration by parts shows that (Tn,u)r2q) = [, V- Vu = [, n(g — u). Since C°(Q)
is dense in W;*(Q), one can see that u solves

(5)

Au=g—u, in Q
u =0, on 9.



On the other hand, if u € W,"*(2) solves (3) for some g, integation by parts shows that

(An,u)rz9) + (s u)r2e) < (llgllzz@) + llullLz@) Inll22 @)

for all u € C°(2). Hence u € DY
For Neumann’s case, the proof is similar. The only somewhat nontrivial part is to show that DV
is dense in W2(Q) (w.r.t. to the norm | - [w1.2(q)(Q)): First, since C>(Q) is dense in W12(2),
for u € DV, any € > 0, there exists v € C®(Q), s.t. |lu — vl|lwr2) < /2. Fix n € C°(R), s.t.
suppn O (=1,1), nl—1/2,1/2) = 1. Set M = [, [0,0]* + [5, [V??O, 0|2 Let d(z) := dist(z, ),
w(z) = d(z)n(NMd(z))d,v, then when N > 0 is big, |[w|lw1.2(q) < < for some C' > 0 depending
only on . Furthermore, d,w = d,v. Then for N is big enough, |[u—(v+w)| <€, and 9, (v+w) = 0.
Hence, DY is dense in W12(Q).
O

Moreover, one has

Theorem 1. When Q C R" is a bounded domain with smooth boundary, then T (or (T™)F) has
discrete spectrum 0 < Ay < Ag < -+ < Ag--- (or respectively, 0 < A\ v < Aoy <+ < Agny--- ).
Moreover, their eigenfunctions {ey} (or {ex,n}) respectively) forms an orthonormal basis of L*(Q).
Furthermore, limy_ o0 Ay = 00 (o1 limg_y00 Ak, N = 00 Tespectively).

4 min-max principle and EPDEs with boundary conditions

In this section, we would like to present another description of eigenvalues of Laplacian operator.
For any vector space L, let ®x(L) denote the set of k-dimensional vector spaces.

Let 2 be a bounded domain in R™ with smooth boundary.

For u € W,?(Q) or u € W2(Q), consider the fuctional

Theorem 2. Let I, = ianeék.(WOl’z(Q)) sup,cy F(u), then there exists 0 # uj, € Wy>(Q) solves

Auk = lkuk, mn Q,
( o

ur =0, on 0N

weakly. That is, for any w € Wol’z(Q),

/Vuk~Vw:lk/ukw.
Q Q

: k—1
Moreover, uy, is orthogonal to {u;}i_;.

Proof. For simplicity, we prove the case of k =1 only.
Let I; = infoyéuewol,z(m F(u). Let w, € Wy*(R2) such that lwnll2) = 1 F(w,) — A Then
|wn |lwi.2() < C for some C > 0. Hence, since W2(Q) < L?*(2) compactly, we may assume that



wy, — uy for some uy € L?(Q). Moreover, since ||[Vwy, | 12) < C, we may assume that Vw, — 9
in weak L?(§2)-topology.
Then for p € C(Q),

n— oo n—oo

/wp = lim Vwpp = — lim w,Vp = —/ w1 Vp
Q Q Q Q

Hence, u; has weak derivative 1. Hence u; € W, ().
Next, we would like to show that u, satisfies the EPDEs (6) weakly.
Fix0#£p € WOI’Q(Q), ug = uy1 + tp, then we must have

d
i]:(ut)\t:o = O

Which, by a straightforward computation, implies that
/ VuVp =1 / up.
Q Q

Similarly,

Theorem 3. Let Iy = infyco, (wi2(q)) sup,ey F(u), then there exists 0 # up, v € WH2(Q) solves

(7)

Aug, N = U, NUk, N, 0§,
Oyup,n =0, on 02

weakly. That is, for any w € W2(Q),

/Vuk-Vw:lk/ukw.
Q Q

k—1

Moreover, ug, N is orthogonal to {u; =1

Remark 3. In fact, A, =l and A\ Ny = i, n. Moreover, one can take e, = W and ex, N =
N L2()
Uk, N

||Uk,NHL2(Q) ’

To be continued...
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