Heat Equation on Vector Bundles

Junrong Yan

1 Basic Settings

Let (M, g) be a closed Riemannian manifolds with Levi-Civita connection ∇^{LC} , $E \to M$ be a hermitian bundle with hermitian metric h. Let ∇^{E} a unitary connection on E, then the connection Laplacian $\Delta^{E} : \Gamma(E) \to \Gamma(E)$ is defined as

$$\Delta^E := -\sum_i \nabla^E_{e_i} \nabla^E_{e_i} + \nabla^E_{\nabla^{LC}_{e_i}e_i},$$

where $\{e_i\}$ is a local orthonormal frame.

Let s be a smooth section of $E \to M$, and for $\epsilon > 0$, denote $|s|_{\epsilon} = \sqrt{h(s,s) + \epsilon}$. In particular, denote $|s| := \sqrt{h(s,s)}$. Let Δ^{LC} be the Laplace–Beltrami operator on (M, g), then

Proposition 1.1.

$$\begin{split} \Delta^{LC} |s|_{\epsilon} &= \frac{\operatorname{Re}h(s, \Delta^{E}s)}{|s|_{\epsilon}} - \frac{\sum_{i} h(\nabla^{E}_{e_{i}}s, \nabla^{E}_{e_{i}}s)|s|_{\epsilon}^{2} - \sum_{i} (\operatorname{Re}h(\nabla^{E}_{e_{i}}s, s))^{2}}{|s|_{\epsilon}^{3}} \\ &\leq \frac{\operatorname{Re}h(\Delta^{E}s, s)}{|s|_{\epsilon}} \end{split}$$

where the last inequality follows from Cauchy-Schwartz inequality. Here Re denotes the real part of a complex number.

Theorem 1.2 (Maximal Principle). Let $\Omega \subset M$ be a connected domain in M with smooth boundary. Assume that $s \in \Gamma(E)$ solves

$$\Delta^E s = 0 \ in \ \Omega$$

Then $\sup_{p \in \Omega} |s|(p) = \sup_{p \in \partial \Omega} |s|(p)$.

Proof. It follows from Proposition 1.1 that

$$\Delta^{LC} |s|_{\epsilon} \le 0.$$

Hence, $\sup_{p\in\Omega} |s|_{\epsilon} = \sup_{p\in\partial\Omega} |s|_{\epsilon}$. Letting $\epsilon \to 0$, the result follows.

2 Heat Equation

It follows from Proposition 1.1 again that

Theorem 2.1 (Maximal Principle). Let s(t) be a time dependent section solves

$$\begin{cases} (\partial_t + \Delta^E) s(t) = 0 \ in \ M \times (0, T] \\ s(0) = s_0 \end{cases}$$
(1)

for some $s_0 \in \Gamma(E), T > 0$. Then $\sup_{(p,t) \in M \times (0,T]} |s| = \sup_{p \in M} |s_0|$.

Set $p_i: M \times M \to M$, $(p_1, p_2) \to p_i$, i = 1, 2, and let $E^* \to M$ be the dual bundle of $E \to M$, then heat kernel K(t, x, y) with respect to Δ^E is a time-dependent section of $p_1^* E \otimes p_2^* E^*$, such that

$$s(t,x) := \int_M \left(K(t,x,y), s_0(y) \right) dy$$

solves (1), where (\cdot, \cdot) is the nature pairing of E^* and E.

Proposition 2.2. 1. K(t, x, y) solves

$$\begin{cases} (\partial_t + \Delta_y^E) K(t, x, y) = 0, \\ \lim_{t \to 0} K(t, x, y) = \delta_x(y) \sum_i e_i(x) \otimes \widetilde{e}_j(y). \end{cases}$$

where $\{e_i\}, \{\tilde{e}_i\}$ are orthonormal basis of E and E^{*} near x and y respectively.

- 2. $K(t, x, y) = K(t, y, x)^*$.
- 3. $K(t + s, x, y) = \int_M (K(s, x, z), K(s, z, y)) dz$. Hence,

$$K(2t, x, x) = \int_{M} (K(s, x, y), K(s, x, y)^{*}) \, dy$$

Theorem 2.3. Let k(t, x, y) be the heat kernel with respect to Δ^{LC} , then $|K(t, x, y)| = \sqrt{h(K(t, x, y), K(t, x, y))} \leq nk(t, x, y)$, where h is the metric on $p_1^*E \otimes p_2^*E^*$ induced by h on $E \to M$, $n = \operatorname{rank}(E)$.

Proof. Notice that $\partial_t |K|_{\epsilon t^2} = \frac{2\operatorname{Reh}(\partial_t K, K) + 2\epsilon t}{2|K|_{\epsilon t^2}} \leq \frac{\operatorname{Reh}(\partial_t K, K)}{|K|_{\epsilon t^2}} + \sqrt{\epsilon}.$ By Proposition 1.1,

$$\begin{cases} (\partial_t + \Delta_y^{LC}) \left(|K(t, x, y)|_{\epsilon t^2} - \sqrt{\epsilon}t - nk(t, x, y) \right) \le 0, \\ \lim_{t \to 0} \left(|K(t, x, y)|_{\epsilon t^2} - \sqrt{\epsilon}t - nk(t, x, y) \right) = 0. \end{cases}$$

By classical maximal principle,

$$\sup_{M \times [0,\infty)} |K(t,x,y)|_{\epsilon t^2} - \sqrt{\epsilon}t - nk(t,x,y) \le 0.$$

Letting $\epsilon \to 0$, the result follows.

3 Heat equation for Hodge Laplacian

Let Δ^H be the Hodge Laplacian, Δ^C be the connection laplacian on $\Lambda^*(T^*M) \to M$, then one has Bochner-Lichnerowicz-Weitzenbock formula

$$\Delta^H = \Delta^C + \sum_{e_i, e_j} c(e_i) c(e_j) R(e_i, e_j),$$

where $\{e_i\}$ is a local orthonormal frame, $\{e^i\}$ is its dual frame, $c(e_i) = e^i \wedge -\iota_{e_i}$, R is the curvature operator.

Theorem 3.1. Let $K^H(t, x, y)$ be the heat kernel with respect to Δ^H , then there exists C = C(n, R) > 0, such that

$$|K^H(t, x, y)| \le e^{Ct}k(t, x, y),$$

where $n = \dim(M)$.

Proof. By Proposition 1.1 and Bochner-Lichnerowicz-Weitzenbock formula, there exists C = C(n, R) > 0, such that

$$\begin{cases} (\partial_t + \Delta_y^{LC}) \left(e^{-Ct} | K(t, x, y) |_{\epsilon t^2} - \sqrt{\epsilon}t - nk(t, x, y) \right) \leq 0, \\ \lim_{t \to 0} \left(e^{-Ct} | K(t, x, y) |_{\epsilon t^2} - \sqrt{\epsilon}t - nk(t, x, y) \right) = 0. \end{cases}$$

By classical maximal principle, and letting $\epsilon \to 0$, the result follows.

Corollary 3.2. There exists C(n, R) > 0, such that for all $t \in (0, 1)$,

$$\int_{M} |K(t, x, y)| dy \le C(n, R).$$

Proof. This is because

$$\int_M k(t, x, y) dy = 1.$$

_		