Heat Equation on Vector Bundles

Junrong Yan

1 Basic Settings

Let (M, g) be a closed Riemannian manifolds with Levi-Civita connection $\nabla^{L C}, E \rightarrow M$ be a hermitian bundle with hermitian metric h. Let ∇^{E} a unitary connection on E, then the connection Laplacian $\Delta^{E}: \Gamma(E) \rightarrow \Gamma(E)$ is defined as

$$
\Delta^{E}:=-\sum_{i} \nabla_{e_{i}}^{E} \nabla_{e_{i}}^{E}+\nabla_{\nabla_{e_{i}}^{L C} e_{i}}^{E},
$$

where $\left\{e_{i}\right\}$ is a local orthonormal frame.
Let s be a smooth section of $E \rightarrow M$, and for $\epsilon>0$, denote $|s|_{\epsilon}=\sqrt{h(s, s)+\epsilon}$. In particular, denote $|s|:=\sqrt{h(s, s)}$. Let $\Delta^{L C}$ be the Laplace-Beltrami operator on (M, g), then

Proposition 1.1.

$$
\begin{aligned}
\Delta^{L C}|s|_{\epsilon} & =\frac{\operatorname{Reh}\left(s, \Delta^{E} s\right)}{|s|_{\epsilon}}-\frac{\sum_{i} h\left(\nabla_{e_{i}}^{E} s, \nabla_{e_{i}}^{E} s\right)|s|_{\epsilon}^{2}-\sum_{i}\left(\operatorname{Reh}\left(\nabla_{e_{i}}^{E} s, s\right)\right)^{2}}{|s|_{\epsilon}^{3}} \\
& \leq \frac{\operatorname{Reh}\left(\Delta^{E} s, s\right)}{|s|_{\epsilon}}
\end{aligned}
$$

where the last inequality follows from Cauchy-Schwartz inequality. Here Re denotes the real part of a complex number.

Theorem 1.2 (Maximal Principle). Let $\Omega \subset M$ be a connected domain in M with smooth boundary. Assume that $s \in \Gamma(E)$ solves

$$
\Delta^{E} s=0 \text { in } \Omega
$$

Then $\sup _{p \in \Omega}|s|(p)=\sup _{p \in \partial \Omega}|s|(p)$.
Proof. It follows from Proposition 1.1 that

$$
\Delta^{L C}|s|_{\epsilon} \leq 0
$$

Hence, $\sup _{p \in \Omega}|s|_{\epsilon}=\sup _{p \in \partial \Omega}|s|_{\epsilon}$. Letting $\epsilon \rightarrow 0$, the result follows.

2 Heat Equation

It follows from Proposition 1.1 again that
Theorem 2.1 (Maximal Principle). Let $s(t)$ be a time dependent section solves

$$
\left\{\begin{array}{l}
\left(\partial_{t}+\Delta^{E}\right) s(t)=0 \text { in } M \times(0, T] \tag{1}\\
s(0)=s_{0}
\end{array}\right.
$$

for some $s_{0} \in \Gamma(E), T>0$. Then $\sup _{(p, t) \in M \times(0, T]}|s|=\sup _{p \in M}\left|s_{0}\right|$.
Set $p_{i}: M \times M \rightarrow M,\left(p_{1}, p_{2}\right) \rightarrow p_{i}, i=1,2$, and let $E^{*} \rightarrow M$ be the dual bundle of $E \rightarrow M$, then heat kernel $K(t, x, y)$ with respect to Δ^{E} is a time-dependent section of $p_{1}^{*} E \otimes p_{2}^{*} E^{*}$, such that

$$
s(t, x):=\int_{M}\left(K(t, x, y), s_{0}(y)\right) d y
$$

solves (1), where (\cdot, \cdot) is the nature pairing of E^{*} and E.
Proposition 2.2. 1. $K(t, x, y)$ solves

$$
\left\{\begin{array}{l}
\left(\partial_{t}+\Delta_{y}^{E}\right) K(t, x, y)=0 \\
\lim _{t \rightarrow 0} K(t, x, y)=\delta_{x}(y) \sum_{i} e_{i}(x) \otimes \widetilde{e}_{j}(y)
\end{array}\right.
$$

where $\left\{e_{i}\right\},\left\{\widetilde{e}_{j}\right\}$ are orthonormal basis of E and E^{*} near x and y respectively.
2. $K(t, x, y)=K(t, y, x)^{*}$.
3. $K(t+s, x, y)=\int_{M}(K(s, x, z), K(s, z, y)) d z$. Hence,

$$
K(2 t, x, x)=\int_{M}\left(K(s, x, y), K(s, x, y)^{*}\right) d y
$$

Theorem 2.3. Let $k(t, x, y)$ be the heat kernel with respect to $\Delta^{L C}$, then $|K(t, x, y)|=$ $\sqrt{h(K(t, x, y), K(t, x, y))} \leq n k(t, x, y)$, where h is the metric on $p_{1}^{*} E \otimes p_{2}^{*} E^{*}$ induced by h on $E \rightarrow M$, $n=\operatorname{rank}(E)$.

Proof. Notice that $\partial_{t}|K|_{\epsilon t^{2}}=\frac{2 \operatorname{Reh}\left(\partial_{t} K, K\right)+2 \epsilon t}{2|K|_{\epsilon t^{2}}} \leq \frac{\operatorname{Reh}\left(\partial_{t} K, K\right)}{|K|_{\epsilon t^{2}}}+\sqrt{\epsilon}$.
By Proposition 1.1,

$$
\left\{\begin{array}{l}
\left(\partial_{t}+\Delta_{y}^{L C}\right)\left(|K(t, x, y)|_{\epsilon t^{2}}-\sqrt{\epsilon} t-n k(t, x, y)\right) \leq 0 \\
\lim _{t \rightarrow 0}\left(|K(t, x, y)|_{\epsilon t^{2}}-\sqrt{\epsilon} t-n k(t, x, y)\right)=0
\end{array}\right.
$$

By classical maximal principle,

$$
\sup _{M \times[0, \infty)}|K(t, x, y)|_{\epsilon t^{2}}-\sqrt{\epsilon} t-n k(t, x, y) \leq 0 .
$$

Letting $\epsilon \rightarrow 0$, the result follows.

3 Heat equation for Hodge Laplacian

Let Δ^{H} be the Hodge Laplacian, Δ^{C} be the connection laplacian on $\Lambda^{*}\left(T^{*} M\right) \rightarrow M$, then one has Bochner-Lichnerowicz-Weitzenbock formula

$$
\Delta^{H}=\Delta^{C}+\sum_{e_{i}, e_{j}} c\left(e_{i}\right) c\left(e_{j}\right) R\left(e_{i}, e_{j}\right)
$$

where $\left\{e_{i}\right\}$ is a local orthonormal frame, $\left\{e^{i}\right\}$ is its dual frame, $c\left(e_{i}\right)=e^{i} \wedge-\iota_{e_{i}}, R$ is the curvature operator.

Theorem 3.1. Let $K^{H}(t, x, y)$ be the heat kernel with respect to Δ^{H}, then there exists $C=C(n, R)>0$, such that

$$
\left|K^{H}(t, x, y)\right| \leq e^{C t} k(t, x, y)
$$

where $n=\operatorname{dim}(M)$.
Proof. By Proposition 1.1 and Bochner-Lichnerowicz-Weitzenbock formula, there exists $C=C(n, R)>0$, such that

$$
\left\{\begin{array}{l}
\left(\partial_{t}+\Delta_{y}^{L C}\right)\left(e^{-C t}|K(t, x, y)|_{\epsilon t^{2}}-\sqrt{\epsilon} t-n k(t, x, y)\right) \leq 0 \\
\lim _{t \rightarrow 0}\left(e^{-C t}|K(t, x, y)|_{\epsilon t^{2}}-\sqrt{\epsilon} t-n k(t, x, y)\right)=0
\end{array}\right.
$$

By classical maximal principle, and letting $\epsilon \rightarrow 0$, the result follows.
Corollary 3.2. There exists $C(n, R)>0$, such that for all $t \in(0,1)$,

$$
\int_{M}|K(t, x, y)| d y \leq C(n, R)
$$

Proof. This is because

$$
\int_{M} k(t, x, y) d y=1
$$

