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1 Basic Settings

Let (M, g) be a closed Riemannian manifolds with Levi-Civita connection∇LC , E →M
be a hermitian bundle with hermitian metric h. Let ∇E a unitary connection on E,
then the connection Laplacian ∆E : Γ(E)→ Γ(E) is defined as

∆E := −
∑
i

∇E
ei
∇E
ei

+∇E
∇LCei ei

,

where {ei} is a local orthonormal frame.
Let s be a smooth section of E → M , and for ε > 0, denote |s|ε =

√
h(s, s) + ε.

In particular, denote |s| :=
√
h(s, s). Let ∆LC be the Laplace–Beltrami operator on

(M, g), then

Proposition 1.1.

∆LC |s|ε =
Reh(s,∆Es)

|s|ε
−
∑

i h(∇E
ei
s,∇E

ei
s)|s|2ε −

∑
i(Reh(∇E

ei
s, s))2

|s|3ε

≤ Reh(∆Es, s)

|s|ε

where the last inequality follows from Cauchy-Schwartz inequality. Here Re denotes the
real part of a complex number.

Theorem 1.2 (Maximal Principle). Let Ω ⊂ M be a connected domain in M with
smooth boundary. Assume that s ∈ Γ(E) solves

∆Es = 0 in Ω

Then supp∈Ω |s|(p) = supp∈∂Ω |s|(p).

Proof. It follows from Proposition 1.1 that

∆LC |s|ε ≤ 0.

Hence, supp∈Ω |s|ε = supp∈∂Ω |s|ε. Letting ε→ 0, the result follows.
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2 Heat Equation

It follows from Proposition 1.1 again that

Theorem 2.1 (Maximal Principle). Let s(t) be a time dependent section solves{
(∂t + ∆E)s(t) = 0 in M × (0, T ]

s(0) = s0

(1)

for some s0 ∈ Γ(E), T > 0. Then sup(p,t)∈M×(0,T ] |s| = supp∈M |s0|.

Set pi : M ×M → M , (p1, p2) → pi, i = 1, 2, and let E∗ → M be the dual bundle
of E →M , then heat kernel K(t, x, y) with respect to ∆E is a time-dependent section
of p∗1E ⊗ p∗2E∗, such that

s(t, x) :=

ˆ
M

(K(t, x, y), s0(y)) dy

solves (1), where (·, ·) is the nature pairing of E∗ and E.

Proposition 2.2. 1. K(t, x, y) solves{
(∂t + ∆E

y )K(t, x, y) = 0,

limt→0K(t, x, y) = δx(y)
∑

i ei(x)⊗ ẽj(y),

where {ei}, {ẽj} are orthonormal basis of E and E∗ near x and y respectively.

2. K(t, x, y) = K(t, y, x)∗.

3. K(t+ s, x, y) =
´
M

(K(s, x, z), K(s, z, y)) dz. Hence,

K(2t, x, x) =

ˆ
M

(K(s, x, y), K(s, x, y)∗) dy

.

Theorem 2.3. Let k(t, x, y) be the heat kernel with respect to ∆LC, then |K(t, x, y)| =√
h(K(t, x, y), K(t, x, y)) ≤ nk(t, x, y), where h is the metric on p∗1E ⊗ p∗2E∗ induced

by h on E →M , n = rank(E).

Proof. Notice that ∂t|K|εt2 = 2Reh(∂tK,K)+2εt
2|K|εt2

≤ Reh(∂tK,K)
|K|εt2

+
√
ε.

By Proposition 1.1,{
(∂t + ∆LC

y ) (|K(t, x, y)|εt2 −
√
εt− nk(t, x, y)) ≤ 0,

limt→0 (|K(t, x, y)|εt2 −
√
εt− nk(t, x, y)) = 0.

By classical maximal principle,

sup
M×[0,∞)

|K(t, x, y)|εt2 −
√
εt− nk(t, x, y) ≤ 0.

Letting ε→ 0, the result follows.
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3 Heat equation for Hodge Laplacian

Let ∆H be the Hodge Laplacian, ∆C be the connection laplacian on Λ∗(T ∗M) → M ,
then one has Bochner-Lichnerowicz-Weitzenbock formula

∆H = ∆C +
∑
ei,ej

c(ei)c(ej)R(ei, ej),

where {ei} is a local orthonormal frame, {ei} is its dual frame, c(ei) = ei ∧ −ιei , R is
the curvature operator.

Theorem 3.1. Let KH(t, x, y) be the heat kernel with respect to ∆H , then there exists
C = C(n,R) > 0, such that

|KH(t, x, y)| ≤ eCtk(t, x, y),

where n = dim(M).

Proof. By Proposition 1.1 and Bochner-Lichnerowicz-Weitzenbock formula, there ex-
ists C = C(n,R) > 0, such that{

(∂t + ∆LC
y )

(
e−Ct|K(t, x, y)|εt2 −

√
εt− nk(t, x, y)

)
≤ 0,

limt→0

(
e−Ct|K(t, x, y)|εt2 −

√
εt− nk(t, x, y)

)
= 0.

By classical maximal principle, and letting ε→ 0, the result follows.

Corollary 3.2. There exists C(n,R) > 0, such that for all t ∈ (0, 1),

ˆ
M

|K(t, x, y)|dy ≤ C(n,R).

Proof. This is because ˆ
M

k(t, x, y)dy = 1.
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