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1 Basic Settings

Let (M, g) be a closed Riemannian manifolds with Levi-Civita connection V¢, E — M
be a hermitian bundle with hermitian metric h. Let V¥ a unitary connection on E,
then the connection Laplacian AP : T'(E) — I'(E) is defined as

AP = =N "VEVE +VEe,,

where {e;} is a local orthonormal frame.
Let s be a smooth section of E — M, and for € > 0, denote |s|c = \/h(s,s) + €.

In particular, denote |s| := \/h(s,s). Let ALY be the Laplace-Beltrami operator on
(M, g), then

Proposition 1.1.

Reh(s, Afs) >, h(VEs, VEs)|s|? = >, (Reh(VEs, s))?
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where the last inequality follows from Cauchy-Schwartz inequality. Here Re denotes the
real part of a complex number.

Theorem 1.2 (Maximal Principle). Let Q C M be a connected domain in M with
smooth boundary. Assume that s € I'(E) solves

APs=0inQ
Then supeq |s|(p) = suppeaq |s](p)-
Proof. Tt follows from Proposition 1.1 that
ALC|5]6 <0.

Hence, sup,cq [$]c = sup,caq |s|c. Letting € — 0, the result follows. O



2 Heat Equation

It follows from Proposition 1.1 again that
Theorem 2.1 (Maximal Principle). Let s(t) be a time dependent section solves

{(at + AE)s(t) = 0 in M x (0,T] "

s(0) = sg
for some sy € T(E),T > 0. Then sup, yenmx(o.1) S| = subpen [0l

Set p; : M x M — M, (p1,p2) — pi, @ = 1,2, and let E* — M be the dual bundle
of E — M, then heat kernel K (¢, x,y) with respect to A¥ is a time-dependent section
of piE ® p3E*, such that

s(t ) = /M (K (t, 2. 9). s0(y)) dy

solves (1), where (-, +) is the nature pairing of E* and F.
Proposition 2.2. 1. K(t,z,y) solves
{(at + APYK(t,2,y) = 0,
limy 0 K (¢, 2, y) = 02(y) 225 €i(x) @ €(y),
where {e;},{€;} are orthonormal basis of E and E* near x and y respectively.
2. K(t,x,y) = K(t,y,x)".
8. K(t+s,z,y)= [, (K(s,z,2),K(s, z,y)) dz. Hence,

K(Qt,x,x):/M(K(s,x,y),K(s,x,y)*)dy

Theorem 2.3. Let k(t,z,y) be the heat kernel with respect to AYC, then |K(t,z,y)| =
VMKt z,y), Kt z,y)) < nk(t,z,y), where h is the metric on p;E @ pyE* induced
by h 0nE—>M n = rank(E).

Proof. Notice that 0| K| = QReh(Qd‘}g ?Het < Re}rgfffm + Ve

By Proposition 1.1,
(0, + ALY (|K(t,2,y) |42 — Vet — nk(t,2,y)) <0,
limy o (|K (L, 2,y)|a2 — Vet —nk(t,z,y)) = 0.

By classical maximal principle,

sup |K(t,2,y)|q2 — Vet — nk(t,z,y) < 0.
M x[0,00)

Letting € — 0, the result follows. O



3 Heat equation for Hodge Laplacian

Let A" be the Hodge Laplacian, A be the connection laplacian on A*(T*M) — M,
then one has Bochner-Lichnerowicz-Weitzenbock formula

AP =AY+ Z c(ei)c(ej) Riei, e;),

€i,ej

where {e;} is a local orthonormal frame, {¢'} is its dual frame, c(e;) = €' A —i.,, R is
the curvature operator.

Theorem 3.1. Let K™ (t,x,1) be the heat kernel with respect to AY | then there exists
C =C(n,R) >0, such that

(K (t,2,y)| < e“(t 2,y),
where n = dim(M).

Proof. By Proposition 1.1 and Bochner-Lichnerowicz-Weitzenbock formula, there ex-
ists C' = C(n, R) > 0, such that

(0 + Aﬁc) (e‘Ct|K(t, T, Y)|e2 — Vet — nk(t, y)) <0,
hmt—)O (eict|K(t7 x, y)|€t2 - \/Et - nk?(t, z, y)) =0.

By classical maximal principle, and letting ¢ — 0, the result follows. O

Corollary 3.2. There exists C(n, R) > 0, such that for all t € (0,1),

/M K(t, 2. y)ldy < C(n. R).

Proof. This is because

/ k(t,z,y)dy = 1.
M



