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Abstract

1 Bosonic string

1.1 Classical Action for Point Particles

In classical physics, the evolution of a theory is described by its field equations. Suppose we have an
action

S =

∫
dtL

where L = 1
2mẊ(t)2 − V (X(t)). Then δS = 0 gives Newton’s law mẌ(t) = −∂V (X(t))/∂X(t).

1.2 Classical Action for Relativistic Point Particles

Action is given by

S0 = −α
∫
ds, (1)

where ds is given by
ds2 = −gµν(X)dXµdXν

where the metric gµν(X), with µ, ν = 0, 1, . . . , D − 1, describes the geometry of the background
spacetime in which the theory is defined.

In particular, if we choose the geometry of our background spacetime to be Minkowskian then our
metric can be written as

gµν(X) 7→ ηµν =


−1 0 0 0

0 1 0 0
0 0 1 0
0 0 0 1

 .

This implies that, in a Minkowskian spacetime, the action becomes

S0 = −m
∫ √

− (dX0)
2

+ (dX1)
2

+ (dX2)
2

+ (dX3)
2
.

Proposition 1. The action (1) remains unchanged if we replace the parameter τ by another parameter
τ ′ = f(τ), where f is monotonic.

Since the square root function is a non-linear function, we would like to construct another action
which does not include a square root in its argument. So we introduce an auxiliary field e(τ) and
consider the equivalent action given by

S̃0 =
1

2

∫
dτ
(
e(τ)−1Ẋ2 −m2e(τ)

)
where Ẋ2 ≡ gµνẊµẊν .
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Consider the variation of S̃0 with respect to the field e(τ)

δS̃0 =
1

2

∫
dτ
δe

e2

(
−Ẋ2 −m2e2

)
,

we get the field equations for e(τ)

e2 = −Ẋ
2

m2
=⇒ e =

√
−Ẋ2

m2
. (2)

Plugging the field equation for the auxiliary field back into the action S̃0, we get S̃0 = S0.
Moreover, S̃0 is that it is invariant under a reparametrization (diffeomorphism) of τ .
This invariance can be used to set the auxiliary field equal to unity, thereby simplifying the action.

However, one must retain the field equations (2) for e(τ) , in order to not lose any information. Hence,
we have that

Ẋ2 +m2 = 0 (3)

which is the position representation of the mass-shell relation in relativistic mechanics.

1.2.1 Canonical Momenta

The canonical momentum, conjugate to the field Xµ(τ), is defined by

Pµ(τ) =
∂L

∂Ẋµ
.

Hence (3) is nothing more than the mass-shell equation for a particle of mass m,

PµPµ +m2 = 0

1.2.2 Varying S̃0 in an Arbitrary Background

Fixing e(τ) ≡ 1, if we assume that the metric is not flat, and thus depends on its spacetime position,
then varying S̃0 with respect to Xµ(τ) results in

δS̃0 =
1

2

∫
dτ
(
−2Ẍνgµν(X)− 2∂kgµν(X)ẊkẊν + ∂µgkν(X)ẊkẊν

)
δXµ,

namely
Ẍµ + ΓµklẊ

kẊ l = 0,

where Γµkl are the Christoffel symbols. These are the geodesic equations describing the motion of a
free particle moving through a spacetime with an arbitrary background geometry.

1.3 Generalization to p-Branes

We now want to generalize the notion of an action for a point particle (0-brane), to an action for
a p-brane. The generalization of S0 = −m

∫
ds to a p-brane in a D(≥ p) dimensional background

spacetime is given by

Sp = −Tp
∫
dµp,

where Tp is the p-brane tension, which has units of mass/vol, and dµp is the (p+1) dimensional volume
element given by

dµp =
√
−det (Gαβ(X))dp+1σ

Where Gαβ is the induced metric on the worldsurface, or worldsheet for p = 1, given by

Gαβ(X) =
∂Xµ

∂σα
∂Xν

∂σβ
gµν(X) α, β = 0, 1, . . . , p

with σ0 ≡ τ while σ1, σ2, . . . , σp are the p spacelike coordinates for the p+ 1 dimensional worldsurface
mapped out by the p-brane in the background spacetime.
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1.3.1 String action

If we assume that our background spacetime is Minkowski, then we have that

G00 =
∂Xµ

∂τ

∂Xν

∂τ
ηµν ≡ Ẋ2

G11 =
∂Xµ

∂σ

∂Xν

∂σ
ηµν ≡ X ′2

G10 = G01 =
∂Xµ

∂τ

∂Xν

∂σ
ηµν .

So our previous action reduces to (Nambu-Goto action)

SNG = −T
∫
dτdσ

√(
Ẋ ·X ′

)2

−
(
Ẋ2
)

(X ′2).

Now, in order to get rid of the square root, we can introduce an auxiliary field hαβ(τ, σ) (this really

is another metric living on the worldsheet, which is different from the induced metric Gαβ)
†
, just like

before with the auxiliary field e(τ). The resulting action is called the string sigma-model, or Polyakov
action, and it is given by

Sσ = −T
2

∫
dτdσ

√
−hhαβ ∂X

µ

∂α

∂Xν

∂β
gµν

where h ≡ det (hαβ).

Proposition 2. The Polyakov action Sσ is equivalent to the Nambu-Goto action SNG.

1.4 Symmetries and Field Equations of the Bosonic String

1.4.1 Global symmetry

Poincare Transformation:
δXµ(τ, σ) = aµνX

ν(τ, σ) + bµ δhαβ(τ, σ) = 0

1.4.2 Local Symmetries of the Bosonic String Theory Worldsheet

• Reparametrization invariance (also known as diffeomorphisms): This is a local symmetry for the
worldsheet. The Polyakov action is invariant under the changing of the parameter σ to σ′ = f(σ):

Xµ(τ, σ) = X ′µ (τ, σ′) and hαβ(τ, σ) =
∂fγ

∂σα
∂fδ

∂σβ
h′γδ (τ, σ′) .

• Weyl Symmetry: Weyl transformations are transformations that change the scale of the metric,

hαβ(τ, σ) 7→ h′αβ(τ, σ) = e2φ(σ)hαβ(τ, σ)

while under a Weyl transformation, δXµ(τ, σ) = 0.

Recall that the stress-energy tensor is given by

Tαβ ≡ −
2

T

1√
h

δSσ
δhαβ

.

Thus, if we now restrict to a Weyl transformation we see that variation of the action becomes

δSσ = −T
2

∫
dτdσ

√
−h(−2φ)hαβTαβ .

transformation. Hence for a Weyl invariant classical theory,

hαβTαβ = 0

i.e. , the corresponding stress-energy tensor must be traceless.
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Given a metric

hαβ =

(
h00 h01

h10 h11

)
.

A diffeomorphism (or reparametrization) allows us assume that hαβ(X) is of the form h(X)ηαβ . Now,
we can use a Weyl transformation to remove this function, i.e. we then have that hαβ(X) = ηαβ .
Consequently, if our theory is invariant under diffeomorphisms and Weyl transformations (there com-
binations are called conformal transformations), then the two-dimensional intrinsic metric, hαβ(X),
can be ”gauged” into the two-dimensional flat metric.

In terms of the gauge fixed flat metric, the Polyakov action becomes

Sσ =
T

2

∫
dτdσ

(
(Ẋ)2 − (X ′)

2
)

where Ẋ ≡ dXµ/dτ and X ′ ≡ dXµ/dσ.

1.4.3 Field Equations for the Polyakov Action Let

The field equations for the fields Xµ(τ, σ) on the worldsheet come from setting the variation of Sσ
with respect to Xµ 7→ Xµ + δXµ equal to zero. This leads to

T

∫
dτdσ

[(
−∂2

τ + ∂2
σ

)
Xµ
]
δXµ + T

∫
dσẊµδXµ

∣∣∣∣
∂τ

−
[
T

∫
dτX ′δXµ

∣∣∣∣
σ=π

+ T

∫
dτX ′δXµ

∣∣∣∣
σ=0

]
We set the variation of Xµ at the boundary of τ to be zero, i.e. δXµ|∂τ = 0, and are left with the

field equations for Xµ(τ, σ) for the Polyakov action,

(
−∂2

τ + ∂2
σ

)
Xµ − T

∫
dτ [X ′δXµ|σ=π + X ′δXµ|σ=0] .

• Closed string.
We get the following field equations for the closed string(

∂2
τ − ∂2

σ

)
Xµ(τ, σ) = 0

with the boundary conditions
Xµ(τ, σ + n) = Xµ(τ, σ).

• Open Strings (Neumann Boundary Conditions).(
∂2
τ − ∂2

σ

)
Xµ(τ, σ) = 0

with the boundary conditions

∂σX
µ(τ, σ + 0) = ∂σX

µ(τ, σ + n) = 0

Note that the Neumann boundary conditions preserve Poincaré invariance since

∂σ (X ′µ)|σ=0,n = ∂σ (aµνX
ν + bµ)|σ=0,n

= aµν∂σX
ν |σ=0,n

= 0

• Open Strings (Dirichlet Boundary Conditions).(
∂2
τ − ∂2

σ

)
Xµ(τ, σ) = 0

with boundary conditions
Xµ(τ, σ = 0) = Xµ

0
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and
Xµ(τ, σ = n) = Xµ

n

Whereas the Neumann boundary conditions preserve Poincaré invariance, the Dirichlet boundary
conditions do not since

(X ′µ)|σ=0,n = (aµνX
ν + bµ)|σ=0,n

= aµνX
ν
0,n + bµ

6= Xµ
0,n

Thus, under a Poincaré transformation the ends of the string actually change.

Finally, note that if we have Neumann boundary conditions on p+1 of the background spacetime
coordinates and Dirichlet boundary conditions on the remaining D− p+ 1 coordinates, then the
place where the string ends is a Dp-brane.

one must impose the field equations which result from setting the variation of Sσ with respect to hαβ

equal to zero. These field equations are given by (see (2.35))

0 = Tαβ = ∂αX · ∂βX −
1

2
hαβh

γδ∂γX · ∂δX

and gauge fixing hαβ to be flat † we get that the field equations transform into the following two
conditions

0 = T00 = T11 =
1

2

(
Ẋ2 +X ′2

)
and

0 = T01 = T10 = Ẋ ·X ′.

1.4.4 Solving the Field Equations

By introducing light-cone coordinates for the worldsheet,

σ± = (τ ± σ),

The field equations
(
∂2
τ − ∂2

σ

)
Xµ = 0 become

∂+∂−X
µ = 0. (4)

While the field equations for the intrinsic worldsheet metric, hαβ become

T++ = ∂+X
µ∂+Xµ = 0

T−− = ∂−X
µ∂−Xµ = 0

Solving (4), one has Xµ = Xµ
R(τ − σ)︸ ︷︷ ︸

right mover

+Xµ
L(τ + σ)︸ ︷︷ ︸

left mover

• Closed String.
Applying the closed string boundary conditions Xµ(τ, σ + n) = Xµ(τ, σ) gives the particular
solution (mode expansion) for the left and right movers as

Xµ
R = 1

2x
µ + 1

2 l
2
s(τ − σ)pµ + i

2 ls
∑
n6=0

1
nα

µ
ne
−2in(τ−σ),

Xµ
L = 1

2x
µ + 1

2 l
2
s(τ + σ)pµ + i

2 ls
∑
n 6=0

1
n α̃

µ
ne
−2in(τ+σ),

where xµ is a constant (called the center of mass of the string), pµ is a constant (called the total
momentum of the string), ls is the string length (also a constant), T = 1

2nα′ and α′ = 1
2 l

2
s .

Now, since Xµ must be real, i.e. (Xµ)
∗

= Xµ, we get that xµ and pµ are real along with

αµ−n = (αµn)
∗

α̃µ−n = (α̃µn)
∗
.

5



Furthermore, from the definition of the canonical momentum,
†
Pµ (τ, σ), we can see that the

mode expansion of the canonical momentum on the worldsheet is given by

Pµ(τ, σ) =
δL

δẊµ
= TẊµ =

Ẋµ

πl2s

=
pµ

π
+

1

πls

∑
n 6=0

(
αµne

−2in(τ−σ) + α̃µne
−2in(τ+σ)

)
.

Now, it can be shown that the field and its canonical momentum satisfy the following Poisson
bracket relations

{Pµ(τ, σ), P ν (τ, σ′)}P.B. = 0,
{Xµ(τ, σ), Xν (τ, σ′)}P.B = 0,
{Pµ(τ, σ), Xν (τ, σ′)}P.B. = ηµνδ (σ − σ′) ,

which implies
{αµm, ανn}P.B. = {α̃µm, α̃νn} = imηµνδm,−n
{αµm, ανn}P.B. = 0
{pµ, xν}P.B = ηµν

• Open String(Neumann Boundary Conditions).

• Open String(Dirichlet Boundary Conditions).

1.4.5 Symmetry and Charge

Associated to any global symmetry of a system, in our case the worldsheet, there exists a conserved
current, jµ, and a conserved charge, Q, i.e.

∂αj
α = 0

d
dτQ = d

dτ

(∫
dσj0

)
= 0

where the integral in the expression for the charge is taken over the spacelike coordinates, which in
our case is just σ.

• For Translation.

δXµ == bµ (σα) ,

jαµ = −T∂αXµ.

The corresponding charge Q is given by

pν =

∫
dσj0ν

=

∫ π

0

dσTẊν

=

∫ π

0

dσPµ

• Lorentz Transformations.

δXµ = aµkX
k.

jµνα = −T
2

(Xµ∂αX
ν −Xν∂αX

µ)
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1.4.6 The Hamiltonian and Energy-Momentum Tensor

Worldsheet time evolution is generated by the Hamiltonian which is defined by

H =

∫ π

σ=0

dσ
(
ẊµP

µ − L
)
.

In our case

H =
T

2

∫ π

σ=0

dσ
(
Ẋ2 +X ′2

)
.

For a closed string theory the Hamiltonian becomes

H =

∞∑
n=−∞

(α−n · αn + α̃−n · α̃n) .

Since
T−− = (∂−X

µ
R)

2
,

T++ = (∂+X
µ
L)

2
,

T−+ = T+− = 0,

One has

T−− = 2l2s

∞∑
m=−∞

Lme
−2im(τ−σ).

Here

Lm =
1

2

∞∑
n=−∞

αm−n · αn

. Similarly,

T++ = 2l2s

∞∑
m=−∞

L̃me
−2im(τ−σ).

Here

L̃m =
1

2

∞∑
n=−∞

α̃m−n · α̃n.

For a closed string we have that

H = 2
(
L0 + L̃0

)
.

1.4.7 Classical Mass Formula for a Bosonic String

Recall the mass-energy relation,
M2 = −pµpµ.

Now, for our Bosonic string theory we have that

pµ =

∫ π

σ=0

dσPµ = T

∫ π

σ=0

dσẊµ =

{
2αµ0
ls

for a closed string,
αµ0
ls

for an open string.

Hence

pµpµ =

{
2α2

0

α′ for a closed string,
α2

0

2α′ for an open string.

Here α′ = l2s/2.
Hence for open string,

0 = L0 =
1

2

∞∑
n=−∞

α−n · αn

=

( ∞∑
n=1

α−n · αn

)
+ α′pµpµ︸ ︷︷ ︸

=M2

.
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For closed string,

M2 =
2

α′

∞∑
n=1

(α−n · αn + α̃−n · α̃n) .

Remark 1. These are the mass-shell conditions for open and closed strings and they tell you the mass
corresponding to a certain classical string state. They are only valid classically since the expressions
for Tαβ and H, in which they were derived, are only valid classically. In the quantized theory they will
get altered a bit.

1.4.8 Witt Algebra (Classical Virasoro Algebra)

The set of elements {Lm} forms an algebra whose multiplication is given by

{Lm, Ln}P.B. = i(m− n)Lm+n

where {·, ·}P.B. is the Poisson bracket.This algebra is called the Witt algebra or the classical Virasoro
algebra. A good question to ask is what is the physical meaning of the Lm’s?

Previously, we fixed the gauge hαβ = ηαβ . However, this does not completely gauge fix the diffeo-
morphism and Weyl symmetries. Consider the transformations given by

δDη
αβ = −

(
∂αξβ + ∂βξα

)
,

δW η
αβ = Ληαβ ,

where ξα is an infinitesimal parameter of reparametrization, Λ is an infinitesimal parameter for Weyl
rescaling, δDη

αβ gives the variation of the metric under reparametrization and δW η
αβ give the variation

under a Weyl rescaling. If we combine these two transformations we get

(δD + δW ) ηαβ =
(
−∂αξβ − ∂βξα + Ληαβ

)
.

Now, what is the most general solution for ξ and Λ such that the above equation is zero? If we can
find these then it means that we have found additional symmetries for our system, which correspond
to reparametrizations which are also Weyl rescalings, i.e. conformal transformations. In terms of the
light-cone coordinates, the equation to be solved becomes

∂αξβ + ∂βξα = Ληαβ .

• α = β = + : Noting that η++ = 0 we have to solve

∂+ξ+ + ∂+ξ+ = Λη++

=⇒ ∂+ξ+ = 0.

• α = β = − : we get =⇒ ∂−ξ− = 0.

• α = +, β = − : we have
∂+ξ− + ∂−ξ+ = −2Λ.

So, local transformations which satisfy

δσ+ = ξ+ (σ+)
δσ− = ξ− (σ−)
Λ = ∂−ξ+ + ∂+ξ−

leave our theory invariant.
Note that the infinitesimal generators for the transformations δσ± = ξ±are given by

V ± =
1

2
ξ±
(
σ±
) ∂

∂σ±

and a complete basis for these transformations is given by

ξ±n (σ±) = e2inσ± , n ∈ Z.

The corresponding generators V ±n give two copies of the Witt algebra Lm, while in the case of the
open string there is just one copy of the Witt algebra, and the infinitesimal generators are given by

V ±n = einσ
+ ∂

∂σ+
+ einσ

− ∂

∂σ−
, n ∈ Z.
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1.5 Canonical Quantization of the Bosonic String

In the canonical quantization procedure, we quantize the theory by changing Poisson brackets to
commutators,

{·, ·}P.B. 7→ i[·, ·],

and we promote the field Xµ to an operator in our corresponding Hilbert space. This is equivalent to
promoting the modes α, the constant xµ and the total momentum pµ to operators. In particular, for
the modes αµm, we have that (here and usually in the sequel we are dropping the i factor)

[α̂µm, α̂
ν
n] = mηµνδm,−n,[

ˆ̃αµm, ˆ̃ανn

]
= mηµνδm,−n,[

α̂µm, ˆ̃ανn

]
= 0,

where the α̂’s on the RHS are realized as operators in a Hilbert space. If we define new operators as
âµm ≡ 1√

m
α̂µm and âµ†m ≡ 1√

m
α̂−m, for m > 0, then they clearly satisfy

[
âµm, â

ν†
n

]
=
[
ˆ̃aµm, ˆ̃a

ν†
n

]
= ηµνδm,n for m,n > 0

This looks like the same algebraic structure as the algebra constructed from the creation/annihilation
operators of quantum mechanics, except that for µ = ν = 0 we get a negative sign, due to the signature
of the metric, [

â0
m, â

0†
n

]
= η00δm,n = −δm,n.

We will see later that this negative sign in the commutators leads to the prediction of negative norm
physical states, or ghost states. which is incorrect.

Next, we define the ground state |0〉, as the state which is annihilated by all of the lowering operators
âµm,

âµm|0〉 = 0 for m > 0

Also, physical states are states that are constructed by acting on the ground state with the raising
operators âµ†m

|φ〉 = âµ1†
m1
âµ2†
m2
· · · âµn†mn |0; kµ〉 ,

which are also eigenstates of the momentum operator p̂µ,

p̂µ|φ〉 = kµ|φ〉.

To prove the claim of negative norm states, consider the state |ψ〉 = â0†
m |0; kµ〉, for m > 0, then we

have that
‖|ψ〉‖2 =

〈
0
∣∣â0
mâ

0†
m

∣∣ 0〉
=
〈
0
∣∣[â0

m, â
0†
m

]∣∣ 0〉
= −〈0 | 0〉.

1.5.1 Virasoro Algebra

We have seen that when we quantize our bosonic string theory the modes α become operators. This
then implies that the generators Lm will also become operators. However, one must be careful because
we simply cannot just say that L̂m is given by

L̂m =
1

2

∞∑
n=−∞

α̂m−n · α̂n, (wrong!)

We must, as in QFT, normal order the operators and thus we define L̂m to be

L̂m =
1

2

∞∑
n=−∞

: α̂m−n · α̂n : .
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Note that normal ordering ambiguity only arises for the case when m = 0, i.e for the operator L̂0. In
normal ordering, we have that L̂0 is given by

L̂0 =
1

2
α̂2

0 +

∞∑
n=1

α̂−n · α̂n.

We introduce normal ordering due to the tact that there is an ordering ambiguity arising from the
commutation relations of the operators α̂ and ˆ̃α. When we commute the operators past each other
we pick up extra constants. So, how do we know what order to put the operators in? The answer
is that we do not. We simply take the correct ordering to be normal ordering. Also, in terms of the
commutation relations for the operators α̂, we get that the commutation relations for the operators
L̂m are given by [

L̂m, L̂n

]
= (m− n)L̂m+n +

c

12
m
(
m2 − 1

)
δm,−n

where c is called the central charge.
We will see that, in the bosonic string theory, c is equal to the dimension of the spacetime where

the theory lives, and in order to no longer have non-negative norm states it must be that c = 26.
Also, note that for m = −1, 0, 1 the c term drops out and we get a subalgebra of SL(2,R), i.e the set{
L̂−1, L̂0, L̂1

}
along with the relations[

L̂m, L̂n

]
= (m− n)L̂m+n

becomes an algebra which is isomorphic to SL(2,R).

1.5.2 Physical states

Classically we have seen that L0 = 0 since to the vanishing of the stress-energy tensor implies that
Lm = 0 for all m, but when we quantize the theory we cannot say that L̂0 = 0, or equivalently
L̂0|φ〉 = 0 for all physical states, follows from this as well because when we quantize the theory we
have to normal order the operator L̂0 and so we could have some arbitrary constant due to this normal
ordering. Thus, after quantizing we can at best say that for an open string the vanishing of the L0

constraint transforms to (
L̂0 − a

)
|φ〉 = 0

where a is a constant. This is called the mass-shell condition for the open string. While for a closed
string we have that

(
L̂0 − a

)
|ψ〉 = 0(

ˆ̄L0 − a
)
|ψ〉 = 0

(5)

where ˆ̄L is the operator corresponding to the classical generator L̃.
Normal ordering also adds correction terms to the mass formula. For an open string theory, the

mass formula becomes

α′M2 =
1

α′

∞∑
n=1

: α̂−n · α̂n : −a = N̂ − a,

where we have defined the number operator N̂ as

N̂ =

∞∑
n=1

: α̂−n · α̂n :=

∞∑
n=1

n : â†n · ân : .

We can use the number operator to compute the mass spectrum,

α′M2 = −a ( ground state n = 0),
α′M2 = −a+ 1 (first excited state n = 1

)
,

α′M2 = −a+ 2 (second excited state n = 2
)
.
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For a closed string we have the mass formula

4

α′
M2 =

∞∑
n=1

: α̂−n · α̂n : −a =

∞∑
n=1

: ˆ̃α−n · ˆ̃αn : −a,

or,
4

α′
M2 = N̂ − a = ˆ̄N − a.

Also, note that if we subtract the left moving physical state condition from the right moving physical
state condition (??), we get that (

L̂0 − a− ˆ̄L+ a
)
|φ〉 = 0,

which implies that (
L̂0 − ˆ̄L0

)
|φ〉 = 0,

which in turn implies that

N̂ = ˆ̄N.

Classically we have that Lm = 0 for all m, which we know does not hold for L̂0, but what about the
operators L̂m for m 6= 0? Well, if L̂m|φ〉 = 0 for all m 6= 0 then we would have that (if we take n in
such a way that n+m 6= 0), [

L̂m, L̂n

]
|φ〉 = 0

But when we plug in the commutation relations we get

(m− n)L̂n+m|φ〉+
c

12
m
(
m2 − 1

)
δm,−n|φ〉 = 0

and since the first term vanishes (because we are assuming L̂m|φ〉 = 0 for all m 6= 0 ) we see that if
c 6= 0 then it must be that either m = −1,m = 0 or m = 1. Thus, if we want to have L̂m|φ〉 = 0 for

all m then we must restrict our Virasoro algebra to only
{
L̂−1, L̂0, L̂1

}
. Instead of doing this we will

only impose that L̂m|φ〉 = 0 = 〈φ|L̂†m for m > 0. Physical states are then characterized by

L̂m>0|φ〉 = 0 = 〈φ|L̂†m>0

and the mass-shell condition (
L̂0 − a

)
|φ〉 = 0.

1.6 Removing Ghost States and Light-Cone Quantization

Previously, we have the physical states |φ〉 were defined as states, |φ〉 = âµ1†
m1
âµ2†
m2
· · · âµn†mn |0; kµ〉, which

obeyed the following two constraints (
L̂0 − a

)
|φ〉 = 0,

L̂m>0|φ〉 = 0.

We also saw that there were certain physical states whose norm was less than zero, a trait that no
physical state can have. However, as was already mentioned, we can get rid of these negative norm
physical states by constraining the constant a, and by also constraining the central charge of the
Virasoro algebra.

1.6.1 Spurious States

A state, |ψ〉, is said to be spurious if it satisfies the mass-shell condition,(
L̂0 − a

)
|ψ〉 = 0

and
〈φ | ψ〉 = 0, ∀ physical states |φ〉.

11



In general, it follows from the definition of a spurious state that a spurious state can be written as
(Also note that L̂†−n = L̂n)

|ψ〉 =

∞∑
n=1

L̂−n |χn〉 ,

where |χn〉 is some state which satisfies the, now modified, mass-shell condition given by(
L̂0 − a+ n

)
|χn〉 = 0.

Now, since any L̂−n, for n ≥ 1, can be written as a combination of L̂−1 and L̂−2 the general
expression for a spurious state (5.4) can be simplified to

|ψ〉 = L̂−1 |χ1〉+ L̂−2 |χ2〉

where |χ1〉 and |χ2〉 are called level 1 and level 2 states, respectively, and they satisfy the mass-shell

conditions
(
L̂0 − a+ 1

)
|χ1〉 = 0 and

(
L̂0 − a+ 2

)
|χ2〉 = 0, respectively.

For example, consider the level 3 state given by |ψ〉 = L̂−3 |χ3〉 . We have that
(
L̂0− a+3) |χ3〉 = 0

as well as L̂−3 =
[
L̂−1, L̂−2

]
which gives us that

L̂−3 |χ3〉 =
[
L̂−1, L̂−2

]
|χ3〉

= L̂−1L̂−2 |χ3〉 − L̂−2L̂−1 |χ3〉

= L̂−1

(
L̂−2 |χ3〉

)
+ L̂−2

(
L̂−1 |−χ3〉

)
.

Since a spurious state |ψ〉 is perpendicular to all physical states, if we require that |ψ〉, then

‖|ψ〉‖2 = 〈ψ | ψ〉 = 0.

Thus, we have succeeded in constructing physical states whose norm is zero and these are precisely the
states we need to study in order to get rid of the negative norm physical states in our bosonic string
theory.

1.6.2 Removing the Negative Norm Physical States

We want to study physical spurious states in order to determine the values of a and c that project out
the negative norm physical states, also called ghost states. So, in order to find the corresponding a
value we should start with a level 1 physical spurious state,

|ψ〉 = L̂−1 |χ1〉

with |χ1〉 satisfying
(
L̂0 − a+ 1

)
|χ1〉 = 0 and L̂m>0 |χ1〉 = 0, where the last relation comes because

we have assumed |ψ〉 to be physical.
Now, if |ψ〉 is physical, which we have assumed, then it must satisfy the mass-shell condition for

physical states, (
L̂0 − a

)
|ψ〉 = 0,

along with the condition
L̂m>0|ψ〉 = 0.

So, if L̂m>0|ψ〉 = 0 then this holds for, in particular, the operator L̂1, i.e. L̂1|ψ〉 = 0 which implies
that a = 1.

Next, in order to determine the appropriate value of c for spurious physical states we need to look
at a level 2 spurious state. Note that a general level 2 spurious state is given by

|ψ〉 =
(
L̂−2 + γL̂−1L̂−1

)
|χ2〉 ,

12



where γ is a constant, that will be fixed to insure that |ψ〉 has a zero norm (i.e. physical), and |χ2〉
obeys the relations, (

L̂0 − a+ 2
)
|χ2〉 = 0,

and
L̂m>0 |χ2〉 = 0.

Similarly, L̂1|ψ〉 = 0 implies that γ = 3
2 , and L̂2|ψ〉 = 0 implies that c = 26. So, if we want to project

out the negative norm physical states (ghost states) then we must restrict the values of a, γ and c to
1, 3/2 and 26 , respectively. Also, note that since the central charge c is equivalent to the dimension of
the background spacetime for our bosonic string theory, then our theory is only physically acceptable
for the case that it lives in a space of 26 dimensions. The a = 1, c = 26 bosonic string theory is
called critical, and the critical dimension is 26 . Finally, there can exist bosonic string theories with
non-negative norm physical states for a ≤ 1 and c ≤ 25, which are called non-critical.

1.6.3 Light-Cone Gauge Quantization of the Bosonic String

Now, we will quantize the theory in a different manner that will no longer have negative norm physical
states at the cost of not being manifestly Lorentz invariant. We can fix this however, at the cost of,
once again, constraining the constants a and c. We will no longer use the hat overtop of operators, i.e.
we will write A for Â, unless there is chance for confusion.

The light-cone coordinates for the background spacetime, X+and X−, are defined as

X+ ≡ 1√
2

(
X0 +XD−1

)
X− ≡ 1√

2

(
X0 −XD−1

)
So, the spacetime coordinates become the set

{
X−, X+, Xi

}D−2

i=1
.

Note that since we are treating two coordinates of spacetime differently from the rest, namely
X0 and XD−1, we have lost manifest Lorentz invariance and so our Lorentz symmetry SO(1, D − 1)
becomes SO(D − 2).

1.7 CFT

1.8 When target space is a Riemannian manifold

1.8.1 Target space is R

We formulate the theory on the cylinder Σ = R × S1 where R is parametrized by the time t and S1

is parametrized by the spatial coordinate s of period 2π, s ≡ s + 2π. The action for the scalar field
x = x(t, s) is given by

S =
1

2π

∫
Σ

Ldtds =
1

4π

∫
Σ

(
(∂tx)

2 − (∂sx)
2
)
dtds.

The action is invariant under the shift in x

δx = α

where α is a constant. It’s conserved charge is given by

p =
1

2π

∫
S1

jtds

with jt = ∂tx.
The action is also invariant under worldsheet space-time translations

δαx = αµ∂µx

The conserved currents are{
T tt = 1

2

(
(∂tx)

2
+ (∂sx)

2
)
,

T st = −∂sx∂tx,

{
T ts = ∂sx∂tx

T ss = − 1
2

(
(∂tx)

2
+ (∂sx)

2
)

and the conserved charges are

13



H =
1

2π

∫
S1

T tt ds =
1

2π

∫
S1

1

2

(
(∂tx)

2
+ (∂sx)

2
)
ds

P =
1

2π

∫
S1

T tsds =
1

2π

∫
S1

∂tx∂sxds.

Quantization.One has mode expansion

Ĥ = Ĥ0 +

∞∑
n=1

Ĥn,

where Ĥ0 = 1
2 p̂

2
0, Ĥn = α̂−nα̂n + ˆ̃α−n ˆ̃αn + n (n comes from communicator).

The target space momentum is simply

p =
1

2π

∫
S1

ẋds = ẋ0 = p0,

and there is a momentum eigenstate |k〉0 for each k

p0|k〉0 = k|k〉0

This is also the energy k2/2 eigenstate of the Hamiltonian

H0 =
1

2
p2

0,

We define |0〉n as the vector annihilated by αn and α̃n. This is a ground state for the Hamiltonian
Hn, with energy n. A general energy eigenstate is constructed by multiplying powers of creation
operators α−n and α̃−n acting on |0〉.

The Hilbert space of the total system is a tensor product of the Hilbert spaces of these constituent
theories. Let us define the state

|0; k〉 := |k〉0 ⊗
∞⊗
n=1

|0〉n.

The state
∞∏
n=1

(α−n)
mn (α̃−n)

m̃n |k〉

has the following worldsheet energy and momentum

H =
k2

2
+
∞∑
n=1

n (mn + m̃n)− 1

12

P =

∞∑
n=1

n (−mn + m̃n)

and also has the target space momentum p = k.
The state |0; 0〉 is the unique ground state with the ground state energy

E0 = − 1

12

and target space momentum p = 0.

Vertex Operator One computes

x (t1, s1)x (t2, s2) =: x (t1, s1)x (t2, s2) : −it1 +
1

2

∞∑
n=1

1

n
((z2/z1)

n
+ (z̃2/z̃1)

n
)
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where zj = ei(tj−sj) and z̃j = ei(tj+sj).
From now on, we assume an infinitesimal Wick rotation t → e−iεt with ε > 0 (the complete

Wick rotation ε = π/2 would lead to z̃i = z̄i). If t1 > t2, we have |z2/z1| < 1, |z̃2/z̃1| < 1,
and the sum is convergent to − 1

2 log (1− z2/z1) − 1
2 log (1− z̃2/z̃1). This convergence shows that

T [x (t1, s1)x (t2, s2)] =: x (t1, s1)x (t2, s2) : − 1
2 log [(z1 − z2) (z̃1 − z̃2)] where T [A (t1, s1)B (t2, s2)] is

the time ordered product, which is A(1)B(2) if t1 > t2 and B(2)A(1) if t2 > t1.

Partition Function. Consider Z (τ1, τ2) = Tr e−2πiτ1P e−2πτ2H . Let us define

HR := 1
2 (H − P ) = 1

4p
2
0 +

∑∞
n=1 α−nαn −

1
24

HL := 1
2 (H + P ) = 1

4p
2
0 +

∑∞
n=1 α̃−nα̃n −

1
24 .

Then the partition function can be written as

Z(τ, τ̄) = Tr e2πiτHRe−2πiτ̄HL ,

= Tr qHR q̄HL ,

where
τ = τ1 + iτ2.

Then Z(τ, τ̄) = (qq̄)−1/24 TrH0
(qq̄)p

2
0/4
∏∞
n=1 TrHRn q

α−nαn TrHLn q̄
α̃−nα̃n .

Moreover,

TrHRn q
α−nαn =

∞∑
k=0

qnk =
1

1− qn
,

TrHLn q̄
α̃−nα̃n =

1

1− q̄n
,

TrH0
(qq̄)p

2
0/4 = TrH0

e−2πτ2H0 = V

∫ +∞

−∞

dp

2π
e−2πτ2( 1

2p
2) =

V

2π

1
√
τ2
.

In the last part, V stands for the cut-off volume in order to make the partition function finite.
Putting all these factors together we obtain

Z(τ, τ̄) = (qq̄)−1/24 V

2π

1
√
τ2

∞∏
n=1

∣∣∣∣ 1

1− qn

∣∣∣∣2
=

V

2π

1
√
τ2
|η(τ)|−2,

where η(τ) is the Dedekind eta function

η(τ) = q1/24
∞∏
n=1

(1− qn) .

One can see that the partition function is invariant under the differomorphisms on T 2 acting on τ
as

τ 7−→ aτ + b

cτ + d

1.8.2 Target space is S1
R

Unlike in case of the real line, since the circle has discrete Fourier modes (as we have studied in Sec.
10.1.1) the target space momentum is quantized in units of 1/R :

p = l/R, l ∈ Z.

Also, the target space coordinate x is not single-valued but is a periodic variable of period 2πR.
This means that there are topologically non-trivial field configurations in the theory which are classified
by the winding number m defined by

x(s+ 2π) = x(s) + 2πmR.
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As we have seen, the conserved current for the momentum is{
jt = ∂tx
js = −∂sx

One can find another current {
jtw = ∂sx

jsw = −∂tx

which satisfies the ”conservation equation” ∂µj
µ
w = 0. The corresponding ”charge” is

w =
1

2π

∫
S1

jtwds =
1

2π
(x(2π)− x(0)) = mR

in the sector with winding number m. Thus, w is the topological charge that counts the winding
number.

The Hilbert space H is decomposed into sectors labelled by two integers - momentum l and winding
number m :

H =
⊕

(l,m)∈Z⊕Z

H(l,m)

The subspace H(l,m) is the space with p = l/R and w = mR and contains a basic element

|0; l,m〉

which is annihilated by αn and α̃n with n > 0. The space H(l,m) is constructed by acting on |l,m〉
with the powers of the creation operators α−n and α̃−n.

We denote by p0 and w0 the operators counting the momentum and the winding number

p0|l,m〉 =
l

R
|l,m〉, w0|l,m〉 = mR|l,m〉

The operator ei
l
Rx0 shifts the momentum. There should also be operators that shift the winding

number. We denote them by eimRx̂0 so that

ei
l1
R x0 |l,m〉 = |l + l1,m〉 , eim1Rx̂0 |l,m〉 = |l,m+m1〉

The operators x0, p0, x̂0, w0 have the commutation relations

[x0, p0] = i, [x̂0, w0] = i

while other commutators vanish.

2 Superstrings

3 String field theory
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