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1 Introduction

These are lecture notes taken from a topics course on Determinants, Analytic Torsion, and Mirror Symmetry
taught by Prof. Xianzhe Dai in Winter quarter 2020. These notes were typed up as a collaborative effort by
Qingjing Chen, Jiasheng Lin, Danning Lu, Will Sheppard, Chengzhang Sun, Alex Xu, and Junrong Yan.

2 The Determinant of the Laplacian

A reference for this section is The Laplacian on a Riemannian Manifold, by Steven Rosenberg. I found a
PDF at: http://math.bu.edu/people/sr/articles/book.pdf

2.1 Finite dimensional determinants

Suppose that A ∈Mn∗n(R). Then we know that

det(A) =
∏

λi∈σ(A)

λnii

1
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where σ(A) is the spectrum, and ni is the algebraic multiplicity of λi. For the remainder of the discussion
in this section, suppose that A is a symmetric, positive definite operator; then∫

Rn
e−〈x,Ax〉dx = πn/2(det(A))−1/2

This is important to physicists as the partition function. To extend this notion to infinite dimensional
operators, we consider the following useful definition.

Definition 2.1. The zeta function corresponding to A is

ζA(s) =
∑

λi∈σ(A)

λ−si

where the eigenvalues λi are counted with their corresponding multiplicity. This is a holomorphic function
of s; everything is well defined since λi are all positive real numbers.

We note that
ζ ′A(s) = −

∑
λi∈σ(A)

λ−si lnλi

In particular, when s = 0, we see that

ζ ′A(0) = −
∑

λi∈σ(A)

lnλi = − ln det(A)

Hence, e−ζ
′
A(0) = det(A). In the remainder of this section, we will work to extend this definition to the case

of infinite dimensional operators by first constructing a “zeta function” in a similar manner. Defined this
way, the determinant is usually called the zeta function regularized determinant. There are also other ways
to “regularize” the determinant which we do not discuss.

2.2 The Hodge Laplacian

Let (Mn, g) be a closed Riemannian manifold, and let Ω∗(M) = Γ(M,Λ∗T ∗M) denote the space of differential
forms over M . Let d : Ωk → Ωk+1 be the de Rham differential. We note that g induces an L2 inner product
on the space of k-forms Ωk by:

〈ω, η〉 =

∫
M

〈ωp, ηp〉pd volg(p)

where 〈ωp, ηp〉p is the inner product induced on ΛkT ∗pM by letting dxi1 ∧ · · · ∧ dxik be an orthonormal basis.
Then, d has an adjoint d∗ with respect to this inner product. Locally, we can compute an explicit formula

for d∗ via integration by parts, so d∗ takes smooth k-forms to smooth k − 1-forms.
Now we define ∆ = dd∗ + d∗d : Ω∗ → Ω∗, the Hodge Laplacian. By construction, it is degree preserving.

Noting that:
〈ω,∆ω〉 = 〈ω, (dd∗ + d∗d)ω〉 = 〈dω, dω〉+ 〈d∗ω, d∗ω〉 ≥ 0,

so ∆ is positive semidefinite. Furthermore, it can be checked locally that ∆ is a second order elliptic operator,
and clearly it is also self-adjoint (symmetric); hence, it has discrete real spectrum, and each eigenvalue has
finite multiplicity. We list them

0 ≤ λ1 ≤ λ2 ≤ · · · → ∞

Moreover, from functional analysis we are indeed sure that λk → +∞ as k →∞ 1.

Remark. Note also that, acting on functions namely 0-forms Ω0(M) = C∞(M), this ∆ is exactly the negative
of the classical Laplace-Beltrami operator.

1See, for example, Lawrence C. Evans, Partial Differential Equations, theorem 6.5.1.
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2.3 The determinant of the Laplacian

In analogy with the finite dimensional case, we now define

ζ∆(s) =
∑
λi>0

λ−si

For the moment, none of this is well defined. Mainly we are met with the following:

• when is the above series convergent?

• does ζ ′∆(0) make sense?

It will turn out by understanding asymptotic behavior of the Laplacian that the above sum converges for
Re(s) > n/2, with analytic continuation to a meromorphic function on C with simple poles at n

2 − `, for
` ∈ N. That is the goal of this section; we begin motivating discussion with an example:

Example 2.1.1. Let M = S1 ⊂ C be the unit circle with the induced metric. It is not hard to compute:

∆ = − ∂2

∂θ2

on Ω0(M) = C∞(M). It follows that the eigenvalues are k2 for k ∈ N, each with multiplicity 2. The
corresponding eigenfunctions are the Fourier basis elements e±kπiθ. Hence, it follows that

ζ∆(s) = 2

∞∑
k=1

(k2)−s = 2ζ(2s)

Where ζ(s) is the Riemann zeta function. We recall that the classical Riemann zeta function has an analytic
continuation as a meromorphic function on C. In particular, it does not have a pole at s = 0. So,

det(∆) = exp(−ζ ′∆(0)) = exp(−4ζ ′(0)),

i.e. the determinant in this case is indeed well-defined. Now we re-examine, in detail, the classical method2

of analysing the zeta function, namely that which uses the Gamma function and Mellin transform, in order
to be clear on how we could possibly generalize.

Recall the construction of the Gamma function:

Γ(s) :=

∫ ∞
0

ts−1e−tdt, for Re(s) > 0. (1)

Which satisfies the functional equation sΓ(s) = Γ(s + 1). From change of variables, for λ > 0, we ob-
tain λ−s = (1/Γ(s))

∫∞
0
ts−1e−tλdt (the Mellin transform). So, in our case, we have

ζ∆(s) = 2

∞∑
k=1

k−2s =
1

Γ(s)

∫ ∞
0

ts−1(2J(t))dt, (2)

where J(t) =
∑∞
k=1 e

−tk2 . Remember that while defined on Re(s) > 0 by the formula (1), the Gamma
function extends, via analytic continuation, to a meromorphic function on the entire complex plane with
simple poles at s = 0,−1,−2, . . . , the non-positive integers. Moreover, from the famous Euler reflection
formula

Γ(1− s)Γ(s) =
π

sin(πs)

we see that Γ(s) is never zero. Thus the reciprocal 1/Γ(s) is in fact entire and has zeros at s = 0,−1,−2, . . . .
Now look at the function J(t). It is clear that the series converges pretty well and is in fact smooth

on (0,+∞). Moreover, note that

|J(t)| ≤
∞∑
k=1

e−tk =
e−t

1− e−t
≤ 1

1− 1/e
e−t

2See, for example, Elias Stein and R. Shakarchi, Complex Analysis, section 6.2.
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for t ≥ 1. So this tells us that in the part

1

Γ(s)

∫ ∞
1

ts−1(2J(t))dt (3)

the integral is always absolutely convergent and defines, indeed, an entire function of s. Our problem then
remains for the behavior of J(t) as t→ 0. For this, we employ the following

Lemma 2.1 (Poisson Summation Formula). Let f(t) be a smooth real function which decays faster than any
inverse power of t as t→ ±∞. Then

∞∑
k=−∞

f(k) =

∞∑
l=−∞

f̂(l), (4)

where f̂(ξ)
(

=
∫∞
−∞ f(t)e−2πiξtdt

)
is the Fourier transform of f(t).

Thus to the function ft(x) = e−tx
2

whose Fourier transform is f̂t(ξ) = 1√
4πt

e−ξ
2/4t, this summation

formula is readily applied, and we obtain

1 + 2

∞∑
k=1

e−tk
2

=
1√
4πt

+
2√
4πt

∞∑
l=1

e−l
2/4t, (5)

implying that, upon noting similarly as before
∑∞
l=1 e

−l2/4t ≤ Ce−1/4t (now t ≤ 1),

2J(t) =
1√
4πt
− 1 +O(e−1/8t) (6)

as t→ 0 (note that 1
4te
−1/4t is bounded for t > 0). So we write

1

Γ(s)

∫ 1

0

ts−1(2J(t))dt =
1

Γ(s)

∫ 1

0

ts−1

(
2J(t)− 1√

4πt
+ 1

)
dt+

1

Γ(s)

∫ 1

0

ts−1

√
4πt

dt− 1

Γ(s)

∫ 1

0

ts−1dt

=
1

Γ(s)

∫ 1

0

ts−1 (exp. decay) dt+
1√

4πΓ(s)
· 1

s− 1
2

− 1

Γ(s+ 1)
,

where in the last term we used the identity sΓ(s) = Γ(s + 1). For the integral in the first term, since
we are multiplying a function of exponential decay (as t → 0), it defines an entire function of s. As said
previously, the reciprocal of the Gamma function is entire. Therefore, combined with part (3), we conclude
that our ζ∆(s) is indeed analytic in all of C except the only simple poles at s = 1

2 . In particular, it does
not have a pole at 0. Hence, finally, we are allowed to find ζ ′∆(0) which constitutes our definition of the
determinant (the Zeta function regularized determinant).

Exercise. Find an explicit formula for ζ ′∆(0). J

Now we come to the general case. In the general case, Mellin transform gives

ζ∆(s) =
∑
λk>0

λ−sk =
1

Γ(s)

∫ ∞
0

ts−1
(
Tr(e−t∆)− dim ker ∆

)
dt, (7)

where Tr(e−t∆) =
∑
λk∈σ(∆) e

−tλk counting multiplicity, and thus the number of 1’s that appear in the trace
is exactly the multiplicity of the zero eigenvalue of ∆, namely dim ker ∆; zero eigenvalues are avoided in
the sum defining ζ∆. Now since the eigenvalues in general can be complicated, tools such as the Poisson
summation formula are not available. However, we have the following

Theorem 2.2 (Heat Asymptotic). Let (Mn, g) be a closed Riemannian manifold, and ∆ the Hodge laplacian
on Ωi(M) (for all i), with its eigenvalues listed, counting multiplicity, 0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λk ≤ · · · → +∞.

4
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Then the trace Tr(e−t∆) =
∑∞
k=1 e

−tλk is smooth on (0,+∞), and as t→ 0, we have a complete asymptotic
expansion Tr(e−t∆) ∼

∑∞
j=0Ajt

−n2 +j, that is, for all l ∈ N,

∣∣∣Tr(e−t∆)−
l∑

j=0

Ajt
−n2 +j

∣∣∣ ≤ Clt−n2 +l+1 (8)

for 0 < t ≤ 1, where Cl is some constant determined by l,

A0 =

(
n
i

)
· volg(M)

(4π)n/2
, and Aj =

∫
M

aj(x)d volg, (9)

where aj(x) is some function depending on the curvature and its derivatives.

Proof. Coming next.

As a consequence, we have

Theorem 2.3 (Weyl Asymptotic). With the same setting as above, for any λ ≥ 0, define N(λ) := #{λi ≤
λ}, i.e. number of eigenvalues ≤ λ counting multiplicity. Then as λ→∞,

N(λ) ∼
(
n
i

)
· volg(M)

(4π)n/2Γ(n2 + 1)
λn/2. (10)

Proof. Coming next. Use the following.

Lemma 2.4 (Karamata’s Tauberian theorem). Let F : [0,+∞) → R be a non-decreasing unbounded func-
tion, and let

ω(t) :=

∫ ∞
0

e−tλdF (λ) (11)

be the Laplace-Stieltjes transform of F . Then for ρ ≥ 0, we have

ω(t) ∼ Ct−ρ as t→ 0 (12)

if and only if

F (λ) ∼ Cλρ

Γ(ρ+ 1)
as λ→∞. (13)

Corollary 2.4.1. As k →∞,

λk ∼

[
(4π)n/2Γ(n2 + 1)(

n
i

)
volg(M)

k

]2/n

. � (14)

Theorem 2.5 (Zeta function is well-defined). In the zeta function of our Laplacian

ζ∆(s) =
∑
λk>0

λ−sk , (15)

the series is absolutely convergent and defines an analytic function of s in Re(s) > n/2. Moreover, it admits
an analytic continuation to all s ∈ C except the only possible simple poles at s = n

2 ,
n
2 − 1, . . . , n2 − l, . . . ,

with 0 excluded (i.e. still regular at 0).

Proof. Coming next. Use the following.

Now we are in a safe position to make

Definition 2.2. Let ∆ be our Hodge laplacian. Then define det(∆) := exp(−ζ ′∆(0)).

5
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2.4 Asymptotic expansion of heat kernel

Let (M, g) be a closed Riemannian manifold, ∆ be the Hodge laplacian on Ωi(M). We define

Tr(e−t∆) :=

∞∑
i=1

e−tλk ,

where λk are eigenvaules of ∆ counting with multiplicities. We want to explore the asymptotic behavior of
Tr(e−t∆) as t→ 0.

Let φk be eigenforms of ∆, i.e. ∆φk = λkφk. Then we know that {φk} forms an orthonormal basis of
L2(Ωi(M)).

Thus for f ∈ L2(Ωi(M)),

f =

∞∑
k=1

ckφk, where ck = (f, φk)L2(Ωi(M)) =

∫
M

< f, φk > dvolg.

Then

(e−t∆f)(x) =

∞∑
k=1

cke
−tλkφk =

∞∑
k=1

e−tλkφk(x)

∫
M

< f, φk > (y)dvol(y).

Now define φ∗k by φ∗k(y)(f(y)) =< f(y), φk(y) >,

K(t, x, y) =

∞∑
k=1

e−tλkφk(x)⊗ φ∗k(y) ∈ Hom(ΛiT ∗yM,ΛiT ∗xM).

We then have

(e−t∆f)(x) =

∫
M

K(t, x, y)f(y)dvol(y).

Here K(t, x, y) is called heat kernel of ∆.
So far, we have

• e−t∆ is an integral operator with integral kernel K(t, x, y).

• K(t, x, y) satisfies the heat equation

(∂t + ∆)K(t, x, y) = 0.

Moreover, for any f ∈ Ωi(M), limt→0

∫
M
K(t, x, y)f(y)dvol(y) = f(x), i.e. limt→0K(t, x, y) = δx(y)Id.

Example 2.2.1. Let M = (Rn, g0), where g0 is the canonical metric on Rn. Then ∆ = −
∑n
k=1

∂2

∂x2
i

on

functions. We can write down the heat kernel explicitly:

K0(t, x, y) =
1

(4πt)n/2
e−d

2(x,y)/t

We now claim Tr(e−t∆) =
∫
M
tr(K(t, x, x))dvol(x). This is because ( for simplicity, let’s prove the case

when ∆ acts on functions),

K(t, x, x) =

∞∑
k=0

e−tλk |φk(x)|2.

Consequently, ∫
M

K(t, x, x)dvol(x) =

∞∑
k=1

e−tλk = Tr(e−t∆).

Since we know that locally, at each x ∈ M , M looks like Euclidean space. So can we approximate
K(t, x, y) on functions by K0(t, x, y) = 1

(4πt)n/2
e−d

2(x,y)/t?

6
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In fact, on Bε0(x), where ε0 ≤ inj(M), we have geodesic coordinates (r, ξ). And

∆ = − ∂2

∂r2
−
∂r(
√
det(g))√
det(g)

∂r + ∆Sn−1
r

,

where Sn−1
r is the geodesic ball with radius r.

Now set Pl(t, x, y) = K0(t, x, y)
∑l
j=0 t

juj(x, y), D =

√
det(g)

2n−1 where uj is to be determined later. By
straightforward computation, we know that

(∂t + ∆)pl(t, x, y) = K0[
r

2t

∂rD

D

l∑
j=0

tjuj +

l∑
j=0

jtj−1uj +

l∑
j=0

tj∆uj +
r

t

l∑
j=0

tj∂ruj ].

If we choose uj , s.t. {
r∂ru0 + r

2
∂rD
D u0 = 0,

r∂ruj + r
2 (∂rDD + j)uj + ∆uj−1 = 0,

(16)

then
(∂t + ∆)pl(t, x, y) = tl(∆yul)K0 = O(tl−n/2).

In fact, (16) can be solved recursively. To extend Pl to whole manifold, we choose a smooth cutoff
function η, s.t.

η(x, y) =

{
1, if d(x, y) ≤ 1

2 inj(M);

0, if d(x, y) > inj(M).

And set Hl(t, x, y) = η(x, y)Pl(t, x, y).

Lemma 2.5.1. Hl(t, x, y) ∈ C∞((0,∞)×M ×M). Moreover,

1. if l > n/2, ∂t + ∆yHl = O(tl−n/2).

2. Hl(t, x, y)→ δx(y) as t→ 0.

In fact, from approximated solution, we have able to derive exact solution(i.e. heat kernel):
Let F,G ∈ C∞((0,∞)×M ×M), F,G = O(1) as t→ 0. Define

(F ∗G)(t, x, y) :=

∫ t

0

∫
M

F (s, x, z)G(t− s, z, ydzds),

F ∗n = F ∗ ... ∗ F︸ ︷︷ ︸
n times

.

Then we have the following Duhamel principle

Lemma 2.5.2 (Duhamel Principle). For fixed l > n/2, the heat kernel K(t, x, y) is given by

K = Hl −

( ∞∑
l=1

(−1)l+1 ((∂t + ∆)Hl)
∗l

)
∗Hl.

As a consequence, we obtain the asyptotic expansion of heat kernel

Theorem 2.6.

K(t, x, y) ∼ 1

(4πt)n/2
e−d

2(x,y)/t
∞∑
j=0

tjuj(x, y)

as t→ 0 for x, y ∈M and d(x, y) ≤ 1
2 inj(M).

Moreover, u0(x, x) = 1, u1(x, y) = 1
3R(x), uj(x, x)(j ≥ 1) depends on the curvature and its derivatives.

Here R(x) is the scalar curvature at point x.

7



Math 241B Determinants, Analytic Torsion, and Mirror Symmetry Winter 2020

Remark. The method extends to the generalized Laplacian: Suppose E 7→M be a vector bundle, ∇E be a
connection on E. Then the Bochner’s Laplacian is defined

∆E = −∇Eei∇
E
ei +∇E∇eiei ,

where {ei} are orthonormal basis of TM.
We say L is a generalized Laplacian L = LE + F , for some F ∈ C∞(M,End(E)). For example, let

E = ΛiT ∗M, then Hodge Laplacian ∆ = ∆E +R for some curvature term R.
Now suppose KL is the heat kernel of L, we have

KL(t, x, y) ∼ 1

(4πt)n/2
e−d

2(x,y)/t
l∑

j=0

Φj(x, y),

where Φj(x, j) ∈ Hom(Ex, Ey). Moreover, Φ0(x, y) is the parallel transport along radical geodesic with
respect to ∇E .

2.5 Variation of determinant

From our previous discussion, our determinant is clearly depends on metric g. Before moving on, let’s look
at a concrete example

Example 2.2.2. Let M = S1, then metric on S1 is sepcific by length L. It’s easy to see that

ζL(s) = 2(
2π

L
)−2sζ(2s),

which implies

ln det(∆L) = −ζ ′L(0) = −4ζ ′(0) + 4(ln(
2π

L
))ζ ′(0).

In general, the situation is much more complicated, and local geometry enters.
Recall

ζ∆(s) =
1

Γ(s)

∫ ∞
0

ts−1(Tr(e−t∆)−B)dt, where B = dim ker(∆).

We first study the asymptotic expansion of heat kernel.
Let (M, g) be a closed Riemannian manifold, E 7→ M be a vector bundle. For a real parameter ε, Lε is

called a family of generalized laplacian if Lε = ∆E
ε +Fε, where ∆E

ε is the Bochner Laplacian with respect to
a C∞ family of metric gε and a smooth family of connection ∇E,ε, and Fε is a smooth family in End(E).

Theorem 2.7. If Lε is a smooth family of generalized Laplacian, then for any t > 0, the family of heat
kernel Kε(t, x, y) depends smooth on ε (as well as (t, x, y)).

Moreover,
∂

∂ε
e−tLε = −

∫ t

0

e−(t−s)Lε ∂Lε
∂ε

e−sLεds.

In particular,
∂

∂ε
Tr(e−tLε) = −tT r(∂Lε

∂ε
e−tLε).

Proof. Smooth dependence comes from the construction of heat kernel.
For the derivative, let φ ∈ C∞(M,E). Then uε := (e−tLεφ)(x) =

∫
M
Kε(t, x, y)φ(y)dy solves the initial

problem {
(∂t + Lε)uε = 0,

uε|t=0 = φ.
(17)

Differential (17) we get {
(∂t + Lε)

∂uε
∂ε = −∂Lε∂ε uε,

∂eu|t=0 = 0.

8
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As a result,
∂uε
∂ε

=

∫ t

0

e−(t−s)Lε(−∂Lε
∂ε

)uε(s)ds =

∫ t

0

e−(t−s)Lε(−∂Lε
∂ε

)e−sLεφds,

which implies
∂

∂ε
Tr(e−tLε) = −tT r(∂Lε

∂ε
e−tLε). (18)

Now suppose Lε is positive, by (18), we have

∂

∂ε
Tr(e−tLε) = t

∂

∂t
Tr(

∂Lε
∂ε

(Lε)
−1e−tLε).

Now for Re(s) > n/2, by our assumption Bε = 0, hence

ζε(s) =
1

Γ(s)

∫ ∞
0

ts−1[Tr(e−tLε)]dt.

Hence,

∂

∂ε
ζε(s) =

1

Γ(s)

∫ ∞
0

ts−1 ∂

∂ε
Tr(e−tLε)dt

=
1

Γ(s)

∫ ∞
0

ts
∂

∂t
Tr(

∂Lε
∂ε

L−1
ε e−tLε)dt

=
ts

Γ(s)
Tr(

∂Lε
∂ε

Lεe
−tLε)|∞t=0 −

1

Γ(s)

∫ ∞
0

sts−1Tr(
∂Lε
∂ε

L−1
ε e−tLε)dt

= − 1

Γ(s)

∫ ∞
0

sts−1Tr(
∂Lε
∂ε

L−1
ε e−tLε)dt

Example 2.2.3. Let (M2, g) be a closed surface, up to diffeomorphism every metric is conformal to each
other, hence it suffices to consider variations of g of the form gε = e2εfg for some f ∈ C∞(M). Then the
corresponding variation of Laplacian is given by

4gε = e−2εf4g

Hence
∂4gε
∂ε

= −2f4gε

and therefore

Tr(
∂4gε
∂ε
4−1
gε e
−t4gε ) = −Tr(2fe−t4gε )

plug this into the formula for ∂
∂εζ4gε , we get (drop the integral from 1 to ∞)

∂

∂ε
ζ4gε = − 1

Γ(s)

∫ 1

0

ts−1Tr(2fe−t4gε )dt

Let Kε(t, x, y)be the heat kernel of 4gε , namely

(e−t4gεϕ)(x) =

∫
M

Kε(t, x, y)ϕ(y)dy

hence

(2fe−t4gεϕ)(x) =

∫
M

2f(x)Kε(t, x, y)ϕ(y)dy

9
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we treat 2f(x)Kε(t, x, y) as the kernel for the new operator 2fe−t4gε , then the Lidskii theorem says that
its trace is given by

Tr(2fe−t4gε ) =

∫
M

2f(x)Kε(t, x, x)dx (19)

Now apply the asymptotic expansion for Kε(t, x, y), we get asymptotic expansion for 2f(x)Kε(t, x, x),
which says that

2f(x)Kε(t, x, x) ∼ 1

4πt

∞∑
j=0

2tjµj(x, x)f(x)

here we have µ0(x, x) = 1 and µ1(x, x) = 1
3R, where R is the scalar curvature. Now if we plug in the

asymptotic expansion for 2f(x)Kε(t, x, x) into (19) we can see that

1

Γ(s)

∫ 1

0

ts−1Tr(2fe−t4gε )dt

has a analytic continuation to s ∈ C and is regular at s = 0. Moreover we its value at s = 0 is given by[
1

Γ(s)

∫ 1

0

ts−1Tr(2fe−t4gε )dt

]
s=0

=
1

4π

∫
M

2f(x)µ1(x, x)dx

Hence we have:

∂

∂ε
ζ ′4gε (0) =

∂

∂s

∣∣
s=0

(
∂

∂ε
ζ4gε (s))

=
∂

∂s

∣∣
s=0

{
s

[
1

Γ(s)

∫ 1

0

ts−1Tr(2fe−t4gε )dt

]}
=

[
1

Γ(s)

∫ 1

0

ts−1Tr(2fe−t4gε )dt

]
s=0

=
1

4π

∫
M

2f(x)µ1(x, x)dx

but then we have µ1(x, x) = 1
3Rgε = 2e−2εf (−4g(εf) +Kg), and hence

∂

∂ε
ln det4gε = − ∂

∂ε
ζ ′4gε (0)

= − 1

3π

∫
M

[εf(−4gf) +Kg] dvolg

If we integrate with respect ε from 0 to 1 we get

Theorem 2.8. (Polyakov formula) If (M2, g) is a closed surface and g̃ = e2fg, then

ln det4g̃ − ln det4g = − 1

6π

∫
M

(|∇f |2 + 2Kgf)dvolg

In gernal we are not so lucky, although

1

Γ(s)

∫ ∞
0

ts−1Tr(
∂Lgε
∂ε

L−1
gε e
−tLgε )dt

does admit analytic continuation to s ∈ C, but s = 0 may be a simple pole: to see this we look at the
asymptotic expansion of

Tr(
∂Lgε
∂ε

L−1
gε e
−tLgε ) =

∫ ∞
t

Tr(
∂Lgε
∂ε

e−sLgε )ds

10
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and if Kε(s, x, y) is the integral kernel of Lgε then we have(
∂Lgε
∂ε

e−sLgεϕ

)
(x) =

(
∂Lgε
∂ε

)
x

∫
M

Kε(s, x, y)ϕ(y)dy

by the Lidskii theorem again we see that its trace is given by

Tr(
∂Lgε
∂ε

e−sLgε ) =

∫
M

(
∂Lgε
∂ε

)
x

Kε(s, x, x)dx

Recall the asymtotic expansion for Kε(t, x, y)

Kε(t, x, y) ∼ 1

(4πt)n/2
e−d

2(x,y)/4t
∞∑
j=0

tjµj(x, y)

which tells us that (
∂Lgε
∂ε

)
x

Kε(s, x, y)|y=x ∼ t−
n
2−1

∞∑
j=0

tjbj(x)

Thus for 0 < t ≤ 1, we have (again drop the integral from 1 to ∞)

∫ 1

t

Tr(
∂Lgε
∂ε

e−sLgε )ds =

∫ 1

t

[∫
M

(
∂Lgε
∂ε

)
x

Kε(s, x, x)dx

]
ds

∼
∫ 1

t

s−n2−1
∞∑
j=0

sjBj

 ds
=

∑
j 6=n

2

−Bj
−n2 + j

t−
n
2 +j +

∑
j 6=n

2

−Bj
−n2 + j

−Bn/2 ln t

where Bj =
∫
M
bj(x)dx, hence

Tr(
∂Lgε
∂ε

L−1
gε e
−tLgε ) =

∫ ∞
t

Tr(
∂Lgε
∂ε

e−sLgε )ds

∼
∑
j 6=n

2

−Bj
−n2 + j

t−
n
2 +j + C −Bn/2 ln t

where C =
∑
j 6=n

2

−Bj
−n2 +j +

∫∞
1
Tr(

∂Lgε
∂ε e

−sLgε )ds is a constant.This shows that

1

Γ(s)

∫ ∞
0

ts−1Tr(
∂Lgε
∂ε

L−1
gε e
−tLgε )dt

does admit an analytic continuation to s ∈ C, but s = 0 may be a simple pole due to the term ln t. Of course
this will not occur if the dimension of the manifold n is odd, in which case Bn/2 = 0.

3 Determinant line bundle

3.1 Introduction

Let L : V −→ W be a linear map between n dimensional vector spaces, then we can define its determinant
as the induced map on the nth exterior power

detL :

n∧
V −→

n∧
W

11
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equivalently detL ∈ (
∧n

W )⊗ (
∧n

V )
∗

which is a “line”, we write this 1 dimensional space as DetW ⊗
(DetV )∗. Now we want to extend to the infinite dimensional vector spaces, this can be done by exploiting
some basic properties of “det”:

1. Det(V ⊕ V ′) ∼= (DetV )⊗ (DetV ′)
2. If we a short exact sequence of vector spaces:

0 −→ V ′ −→ V −→ V ′′ −→ 0

then we have DetV ∼= (DetV ′)⊗ (DetV ′′)
3. More generally if we have any linear map L : V −→ W , then we have (DetW ) ⊗ (DetV )

∗ ∼=
(DetCokerL)⊗ (DetKerL)

∗

The last property enables us to define determinant line for linear maps between vector space not neces-
sarily of finite dimensions, but has finite dimensional kernals and cokernels, in this case we can simply define
the determinant line as (DetCokerL)⊗ (DetKerL)

∗
, but a priori this may depend on L.

3.2 Dirac (type) operators

Recall that we have the Hodge laplacian 4 = dd∗ + d∗d = (d+ d∗)2 defined on the exterior algebra bundle∧∗
M . It is an example of Dirac (type) operator, as one can check that 4 = c(ei)∇ei where {ei} is an

orthonormal frame of the tangent bundle TM , ∇ being the Levi-Civita connection (here more precisely
it’s the induced covariant derivative on

∧∗
M) and c(ei)ω = (e∗i ∧ ω) − (eiyω) is an example of Clifford

multiplication, it satisfies the Clifford relation:

c(ei)c(ej) + c(ej)c(ei) = −2δij

Definition 3.0.1. (Clifford bundle) Let (Mn, g) be a Riemannian manifold, a vector bundle E −→ M is
called a Clifford bundle if there is a bundle homomorphism

c : TM ⊗ E −→ E

(v, s) 7−→ c(v)s

satisfying
c(v)c(w) + c(w)c(v) = −2g(v, w)

for any tangent vectors v, w. We call such a c a Clifford mulplication

Example 3.0.1. E =
∧∗

M and c(v) = v∗∧−vy provides an example of Clifford bundle as we have discussed.

Definition 3.0.2. (Clifford connection) A connection ∇E on a Clifford bundle is called a Clifford connection
if it is compatible with the Clifford connection in the sense that for any vector fields V,W ∈ C∞(M,TM)
and a section s ∈ C∞(M,E)

∇EV (c(W )s) = c(∇VW )s+ c(W )∇EV s

where ∇ is the usual Levi-Civita connection.

Using the Clifford connection we can define the more general Dirac (type) operator

D = c(ei)∇Eei : C∞(M,E) −→ C∞(M,E)

where {ei} is an orthonormal frame of TM . It is known that such a D is a 1st order elliptic differential
operator, and is self adjoint with respect to an L2 −metric 〈 , 〉 on the completion of the space C∞(M,E)
provided that 〈 , 〉 is compatible with the Clifford multiplication in the sense that in the sense that for any
unit tangent vector v ∈ TM we have 〈c(v)s, c(v)s′〉 = 〈s, s′〉, such a metric always exists.

12
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Theorem 3.1. (Lichnerowiz) D2 is a generalized laplacian, namely

D2 = 4E +R

where R = 1
2c(ei)c(ej)R

E(ei, ej), {ei} is an orthonormal frame and RE is the curvature os ∇E.

Proof. ∀x ∈M , choose a local orthonormal frame {ei} near x such that ∇eiej = 0 at x. Then at x we have

D2 = (c(ei)∇Eei)(c(ej)∇
E
ej )

= c(ei)c(ej)∇Eei∇
E
ej

= −∇Eei∇
E
ei +

∑
i 6=j

c(ei)c(ej)∇Eei∇
E
ej

= 4E +
1

2

∑
i 6=j

c(ei)c(ej)
[
∇Eei∇

E
ej −∇

E
ej∇

E
ei

]
= 4E +

1

2
c(ei)c(ej)R

E(ei, ej)

Now we would like to discuss a Z2-grading (supersymmetry) on the Clifford bundle, let’s start with an
example:

We have the Hodge laplacian 4 = D2 where D = d + d∗ : Ω∗(M) −→ Ω∗(M) , we can consider
the consider the involution σ = (−1)deg :

∧∗
M −→

∧∗
M , it gives us a direct sum decomposition

∧∗
M =∧even

M⊕
∧odd

M , where
∧even

M and
∧odd

M are eigen-subbundles with eigenvalues 1 and −1 respectively.
Moreover it is straightforward to check that σ anticommutes with D, namely σD = −Dσ, hence with respect
to the above direct sum decomposition D may be written as

D =

[
0 Dodd

Deven 0

]
and (Deven)

∗
= Dodd (because D∗ = D is self-adjoint). Such a σ is called a Z2-grading on

∧∗
M .

Remark 3.1.1. In the previous example, we have ind(Deven) := dim kerDeven − dim kerDodd = χ(M) is
the Euler characteristic of M .

Definition 3.1.1. A Z2-grading on a Clifford bundle E is a bundle homomorphism σ : E −→ E such that{
σ2 = Id

σD +Dσ = 0

Example 3.0.2. On a complex Clifford bundle over an even dimensional manifold, we can take σ = (−1)
n(n+1)

4 c(e1)c(e2) · · · c(en).
If n is divisble by 4, then we con’t need E to be complex.

Let (E,∇E) be Clifford bundle with Clifford connection. Thus we can get a Dirac operator

D = c(ei)∇Eei .

Let σ : E → E be a Z2-grading, which satisfies

1. σ2 = Id⇒ E = E+ ⊕ E−.

2. σD = Dσ ⇒ D =
o D−

D+ 0
.

We have
detD+ ∈ (Det CokerD+)⊗ (Det kerD+)∗

13
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3.3 Determinant Line Bundle

Variation of determinant of Laplacian.
Similarily: variation of determinant of Dirac
Geometric description of variation parameters:

M X

B

π

Where M → X is the fiber bundle/fibration, and B is the parameter space.
For ∀b ∈ B, Xb = π−1(b) ∼= M .

TVX ⊂ TX is defined to be the tangent vectors of X tangent to the fibers. Assume that we are given the
decomposition

TX = TVX ⊕ THX.

Here THX is called the horizontal bundle, which is always isomorphic to π∗TB.
(i.e., the fiber bundle comes with a connection.)
Let gV be a fiberwise metric on TVX. (family of Riemmannian metrics on typical fiber M .)

Example 3.0.3. Previous, family of generalized Laplacian

E,∇E,ε M X = M × I

(M, gε) B = I

π TVX =

π̃∗TM , π̃ : M × I →M , gV = gε. Given

M X

B

π with TX = TVX ⊕ THX, gV metric on TVX.

Exercise: Choose Riemmanian metric on B, gB , then gX = gV ⊕ π∗gB gives Riemmanian metric on X.
Thus we can find connection on TVX ny projection the Levi-Civita connection:

TVX

X

Explicitly, if V is a vector field on X, W ∈ C∞(X,TVX) is a vector field on X tangent to the fibers,

then
∇VW = (∇LVW )V ,

where ∇L is the Levi-Civita connection, and for a vector field U on X, UV is the projection onto the vertical
part, given by the decomposition TX = TVX ⊕ THX.
Exercise: ∇ is independent of the choice of gB .

Now, E → X is called the (fiberwise) Clifford bundle, if

c : TVX ⊗ E → E

satisfies Clifford relations.
∇E is called tthe Clifford connection if

∇EV (c(W )s) = c(∇VW )s+ c(W )∇EV s,

where V ∈ C∞(X,TX), W ∈ C∞(X,TVX) and s ∈ C∞(X,E).
and we have family of Dirac operators D = c(ei)∇Eei , where {ei} is local orthonormal frame for TVX.
∀b ∈ B,

Db : C∞(Xb, E|Eb)→ C∞(Xb, E|Eb)

is first order elliptic, self-adjoint (with respect to right metric on E)
Assume additionally, we have a Z2-grading σ : E → E.
We have determinant line

(Det CokerD+
b )⊗ (Det kerD+

b )∗.

14
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Turns out they patch together to form a smooth line bundle over B, which is called the determinant line
bundle. It comes with a natural metric, the Quillen metric, and a compatible connection, the Bismut-Freod
connection. The curvature formula for the Bismut-Fried connection elegantly encodes the variation of the
determinant of Dirac operators.

Remark. Since D∗ = D, which implies that (D+)∗ = D−, which further implies that CokerD+ ∼= kerD−.
Determinant line bundle at b ∈ B is

(Det kerD−b )⊗ (Det kerD+
b ).

The main issue is that, in general, dim kerD±b may not be constant in b!

3.4 Quillen’s construction of the determinant line bundle

We use the method of Quillen to show that our determinant line bundle is smooth. The main issue really is
with the small eigenvalues vanishing; to resolve this, we take them into consideration in this construction.
Let

E

M X

B

π

be a fiber bundle as before, and let D be a family of Dirac operators over M . σ : E → E is a Z2-grading.
Fix a > 0, let Ua = {b ∈ B|a /∈ SpecD2

b}, which is an open subset of B. Let Ka
b be the direct sum of

eigenspaces of D2
b (which is a generalized Laplacian) with eigenvalue less than a. Thus we have Ka → Ua as

smooth vector bundles. (Remark: only constant dimension over connected parts).Also, σ : Ka → Ka gives
decomposition Ka = Ka,+ ⊕Ka,−.

Define λa = (DetKa,−)⊗ (DetKa,+)∗. This is a smooth line bundle over Ua.
Note that we still have short exact sequences

0→ kerD+ → Ka,+ D+

−−→ D+(Ka,+)→ 0,

0→ D+(Ka,+)→ Ka,− → kerD− → 0.

For the second one, note that ϕ ∈ Ka,+ is an eigensection implies D−D+ϕ = D2ϕ = λϕ, with 0 ≤ λ < a;
and σϕ = ϕ.
So, we have

λa = (DetKa,−)⊗ (DetKa,+)∗ ∼= (Det kerD−)⊗ (Det kerD+)∗

a smooth line bundle over Ua.
We now describe how the λa glue together to form a line bundle; note that since Dirac operators have

discrete spectrum, the Ua’s indeed form an open cover. Let 0 < a < a′, and define Ua,a
′

= Ua ∩Ua′ . Define
the bundle Ka,a′ as the direct sum of all eigenspaces corresponding to eigenvalue a < λ < a′. As before, this
is a smooth vector bundle since it has constant rank on each connected component. Notice that

Ka′ = Ka ⊕Ka,a′

Hence, taking the determinant line bundle we have a canonical isomorphism

λa
′

= λa ⊗ λa,a
′

Where λa,a
′

is the determinant line bundle of Ka,a′ . We now note that D : Ka,a′ → Ka,a′ is a bundle
isomorphism, since Ka,a′ is a direct sum of eigenspaces with bounded below and above eigenvalue. Hence,
λa,a

′
is actually the trivial line bundle so the isomorphism above is actually between λa

′
and λa.

15
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To see that the cocycle condition holds for this system, let 0 < a < a′ < a”. We now observe that

Ka,a” = Ka,a′ ⊕Ka′,a”

So we get a canonical isomorphism of line bundles

λa,a” = λa,a
′
⊗ λa

′,a”

Which gives us the cocycle condition! Hence, we have shown

Theorem 3.2. The line bundles λa over Ua glue into a line bundle λ defined over all of B. Over each fiber
there is a canonical isomorphism λb ∼= (Det CokerD+

b )⊗ (Det kerD+
b )∗.

Example 3.0.4. Let M ↪→ X → B be a fiber bundle, and let E = Λ∗(TV )∗X be the Clifford bundle of vertical
differential forms. Then D = dV + (dV )∗ is a Dirac operator, where dV is the fiberwise differential, and the
adjoint is taken with respect to gV . We take the natural grading given by degree; i.e. σ(ω) = (−1)pω for
ω ∈ Λp. So even degree forms are the even part of our Clifford bundle and odd degree forms make up the
odd part of E.

Then, we note that D2 = ∆V the fiberwise Hodge-Laplacian. It follows from Hodge theory that kerD+ ∼=
Heven(M), the vector bundle of fiberwise harmonic even forms, and likewise kerD− ∼= Hodd(M). So in
particular, the determinant line bundle λ = is already well-defined without any gluing (i.e. there is no weird
dimension jumping).

3.5 The Quillem metric on the Determinant Line Bundle

Quillen also showed that the determinant line bundle also carries a natural smooth metric. We begin by
motivating this by continuing the example from above.

Example 3.0.5. As before, let E be the clifford bundle of vertical differential forms. There is a fiberwise L2

metric on the space of sections Γ(X,E) given by:

〈φ, ψ〉b =

∫
Xb

〈φ, ψ〉dvolgVb ∈ C
∞(B)

This passes down to kerD± via identification by fiberwise harmonic forms, and hence a fiberwise metric
‖ · ‖L2 on the determinant line bundle λ. The Quillen metric in this case is

‖ · ‖2Q = ‖ · ‖2L2 · exp
−1

2
ζ ′D2(0)

The latter term should be thought of as a correction term; in the general case ‖ · ‖L2 may not be smooth,
while ‖ · ‖Q is!

Now we proceed to the general case. For a > 0 fixed, recall that we have a corresponding smooth vector
bundle Ka,± → Ua, endowed with ‖ · ‖L2,a a fiberwise L2 metric. As before, this gives rise to a smooth
metric on the corresponding determinant bundle λa.

We now investigate how the metric changes when we pass from Ua to Ua
′

for 0 < a < a′. The isomorphism
over Ua,a

′
can be described by

λa → λa
′ ∼= λa ⊗ λa,a

′

s 7→ s⊗ detDa,a
′

Note that by self adjointness of D, we have Ka ⊥ Ka,a′ . Hence,

‖s⊗ detDa,a
′,+‖2L2,a′ = ‖s‖2a‖ detDa,a

′,+‖2L2,a,a′

= ‖s‖2a(det(Da,a
′
)2)1/2

16
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The second equality comes from self-adjointness of D. So gluing gives a discrepancy, with the correction term
coming from the determinant. In light of what we have done with the log determinant, it is not surprising
that this should come from:

ζD2,a(s) =
∑
λ>a

λ−s

=
1

Γ(s)

∫ ∞
0

ts−1

[
Tr(e−D

2

)−
∑
λ<a

e−tλ

]
dt

for λ ∈ Spec(D). As before, we use zeta function regularization and heat kernel methods to make the integral
converge. And so it follows that

‖ · ‖2Q,a = ‖ · ‖2L2,a · exp
−1

2
ζ ′D2,a(0)

will agree on the overlaps, and we have proven

Theorem 3.3 (Quillen). The metric locally defined by ‖ · ‖2Q,a on Ua is a smooth metric on λ.

4 Curvature of determinant line bundle

4.1 Torsion of a chain complex

Let (E, ∂̄) be a chain complex of finite dimensional vector spaces (over R or C):

0→ E0 ∂̄−→ E1 ∂̄−→ E2 ∂̄−→ · · · ∂̄−→ El → 0, ∂̄2 = 0.

The determinant line of (E, ∂̄) is defined as

λ = DetE := (DetE0)∗ ⊗ (DetE1)⊗ (DetE2)∗ ⊗ · · · ,

where the last term is DetEl or (DetEl)∗ depending on the parity of l. Since DetEi is one-dimensional, there
is a canonical isomorphism (DetEi)∗⊗(DetEi) ∼= R or C. It makes sense to denote (DetEi)∗ = (DetEi)−1.
In this notation,

λ = DetE := (DetE0)−1 ⊗ (DetE1)⊗ (DetE2)−1 ⊗ · · · .

The cohomology of (E, ∂̄) is Hi := ker ∂̄i/ im ∂̄i−1, where ∂̄i : Ei → Ei+1. We have short exact sequences

0→ im ∂̄i → ker ∂̄i+1 → Hi+1 → 0,

0→ ker ∂̄i+1 → Ei+1 → im ∂̄i+1 → 0.

Hence, DetEi+1 ∼= DetHi+1 ⊕Det im ∂̄i ⊕Det im ∂̄i+1, and thus we have a canonical isomorphism

λ = DetE ∼= DetH∗ := (DetH0)−1 ⊗ (DetH1)⊗ · · · . (20)

Remark. In algebraic topology, we have an analogue (Euler-Poincaré formula)

l∑
i=0

(−1)i dimEi =

l∑
i=0

(−1)i dimHi.

Now assume that (E, ∂̄) is acyclic, i.e., Hi(E) = 0 for all i. Then the canonical isomorphism (20) becomes

λ = DetE ∼= R or C,

i.e., there is a canonical nonzero vector T (∂̄) ∈ λ, called the torsion of (E, ∂̄).

17
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In fact, the torsion can be constructed as follows. As the complex is acyclic, the pair of short exact
sequences reduces to

0→ im ∂̄i → Ei+1 → im ∂̄i+1 → 0.

Let ni = dim im ∂̄i, and v̄
(i+1)
1 , . . . , v̄

(i+1)
ni form a basis of im ∂̄i ⊆ Ei+1. Then for j = 1, . . . , ni, there exists

v
(i)
j ∈ Ei such that v̄

(i+1)
j = ∂̄v

(i)
j . Let

si = v
(i)
1 ∧ · · · ∧ v(i)

ni ∈
∧ni

Ei.

Then
∂̄si = ∂̄v

(i)
1 ∧ · · · ∧ ∂̄v(i)

ni = v̄
(i+1)
1 ∧ · · · ∧ v(i+1)

ni ∈
∧ni

Ei+1,

and
∂̄si ∧ si+1 = v̄

(i+1)
1 ∧ · · · ∧ v(i+1)

ni ∧ v(i+1)
1 ∧ · · · ∧ v(i+1)

ni+1
∈ DetEi+1.

It is nonzero because v̄
(i+1)
1 , . . . , v̄

(i+1)
ni , v

(i+1)
1 , . . . , v

(i+1)
ni+1 form a basis of Ei+1.

Definition 4.1. The torsion of the acyclic chain complex (E, ∂̄) is

T (∂̄) = (s0)−1 ⊗ (∂̄s0 ∧ s1)⊗ (∂̄s1 ∧ s2)−1 ⊗ · · · ∈ λ \ {0}.

Clearly this is independent of the choice of bases.

Example 4.1.1. Any short exact sequence

0→ E0 i−→ E1 j−→ E2 → 0

is an acyclic chain complex. In this case the torsion gives a canonical isomorphism

λ = DetE = (DetE0)−1 ⊗ (DetE1)⊗ (DetE2)−1 ∼= R or C,

i.e.,
DetE1 ∼= (DetE0)⊗ (DetE2),

which has been used repeatedly.

Now let (E, ∂̄) be endowed with an inner product (or Hermitian inner product). Then the determinant
line inherits an inner product.

Definition 4.2. The analytic torsion of the acyclic chain complex (E, δ) is

τ(∂̄) = |T (∂̄)|.

Since ∂̄i : Ei → Ei+1, its dual map is ∂̄∗i : Ei+1 → Ei. Put

D = ∂̄ + ∂̄∗ :

l⊕
i=0

Ei →
l⊕
i=0

Ei.

Then
D2 = ∂̄∂̄∗ + ∂̄∗∂̄

preserves the degree. Denote D2
i = D2|Ei : Ei → Ei. Then detD2

i ∈ R+.

Proposition 4.1. ln τ(∂̄) = 1
2

∑l
i=0(−1)i+1i ln detD2

i .

Proof. First, note that Ei =
⊕

λ∈SpecD2
i
Ei(λ), where Ei(λ) is the eigenspace of D2

i with eigenvalue λ. Since

∂̄D2 = D2∂̄, we have ∂̄ : Ei(λ)→ Ei+1(λ) and thus

(E, ∂̄) =
⊕

λ∈SpecD2

(E(λ), ∂̄).

18
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Hence without loss of generality, we can assume D2 has only one eigenvalue λ > 0. 3

Secondly, if v ∈ Ei, then D2v = λv, and thus

v =
1

λ
D2v =

1

λ
∂̄∂̄∗v +

1

λ
∂̄∗∂̄v =: v1 + v2,

where v1 ∈ im ∂̄, v2 ∈ im ∂̄∗. We have an orthogonal decomposition

Ei = im ∂̄i−1 + im ∂̄∗i+1.

Proof: 〈∂u1, ∂
∗u2〉 =

〈
∂2u1, u2

〉
= 0.

Now we choose an orthonormal basis v
(i)
1 , . . . , v

(i)
ni for im ∂̄i, and then λ−1/2∂̄v

(i)
1 , . . . , λ−1/2∂̄v

(i)
ni form

an orthonormal basis of im ∂̄i. Proof: 〈λ−1/2∂̄v
(i)
j , λ−1/2∂̄v

(i)
k 〉 = λ−1〈∂̄∗∂̄v(i)

j , v
(i)
k 〉 = λ−1〈D2v

(i)
j , v

(i)
k 〉 =

〈v(i)
j , v

(i)
k 〉 = δjk, and ∂̄ : im ∂̄∗i+1 → im ∂̄i is an isomorphism. Hence,

T (∂̄) = (v
(0)
1 ∧ · · · ∧ v(0)

n0
)⊗ (∂̄v

(0)
1 ∧ · · · ∧ ∂̄v(0)

n0
∧ v(1)

1 ∧ · · · ∧ v(1)
n1

)⊗ · · · .

However, |λ−1/2∂̄v
(i)
1 ∧· · ·∧λ−1/2∂̄v

(i)
ni ∧v

(i+1)
1 ∧· · ·∧v(i+1)

ni+1 | = 1, where ni = dim im ∂̄∗i+1 = dim im ∂̄i. Hence,

|∂̄v(i)
1 · · · ∧ ∂̄v

(i)
ni ∧ v

(i+1)
1 ∧ · · · ∧ v(i+1)

ni+1 | = λni/2. Thus we have

τ(∂̄) = |T (∂̄)| = λ
1
2

∑l
i=0(−1)ini .

And detD2
i = λdimEi = λni+ni−1 . Since

l∑
i=0

(−1)i+1i(ni + ni−1) =

l∑
i=0

(−1)i+1ini −
l−1∑
i=0

(−1)i(i+ 1)ni

=

l∑
i=0

(−1)ini, (nl = 0)

this completes the proof.

Remark. 1. Both T (∂̄) and τ(∂̄) can be defined in general, but will depend on the choice of volume forms
on Hi.

2. Under canonical isomorphism, T (∂̄) = detD+ up to scaling.

4.2 Holomorphic vector bundles

Let M be a complex manifold, i.e., there is an atlas {(Uα, ϕα)} where ϕα : Uα → Cn is such that

ϕαβ = ϕαϕ
−1
β : ϕβ(Uα ∩ Uβ)→ ϕα(Uα ∩ Uβ)

is holomorphic.

Example 4.2.1. CPn is a complex manifold. The open subset GL(k,mathbbC) ⊆ Ck2 is also a complex
manifold.

Let M = C and z = x+ iy ∈M . We define

∂

∂z
=

1

2

(
∂

∂x
− i ∂

∂y

)
,

∂

∂z̄
=

1

2

(
∂

∂x
+ i

∂

∂y

)
.

Then f ∈ C∞(M) is holomorphic if and only if ∂f
∂z̄ = 0 (Cauchy-Riemann equation). Define dz = dx+ idy

and dz̄ = dx− idy. Then

df =
∂f

∂x
dx+

∂f

∂y
dy =

∂f

∂z
dz +

∂f

∂z̄
dz̄ =: ∂f + ∂̄f.

3Here we are using the fact that τ(∂̄ ⊕ ∂̄′) = τ(∂̄)τ(∂̄′) and that det(Di ⊕D′i)
2 = detD2

i detD′i
2.
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We have a decomposition d = ∂ + ∂̄.
More generally, M = Cn, and (z1, . . . , zn) ∈M . Write zi = xi +

√
−1yi. Define

∂

∂zi
=

1

2

(
∂

∂xi
−
√
−1

∂

∂yi

)
,

∂

∂z̄i
=

1

2

(
∂

∂xi
+
√
−1

∂

∂yi

)
;

dzi = dxi +
√
−1 dyi, dz̄i = dxi −

√
−1 dyi;

∂f =

n∑
i=1

∂f

∂z
dz, ∂̄f =

n∑
i=1

∂f

∂z̄
dz̄.

Then TM ⊗ C has a decomposition

TM ⊗ C = T (1,0)M ⊕ T (0,1)M,

where T (1,0)M is spanned by ∂
∂zi

, i = 1, . . . , n, and T (0,1)M is spanned by ∂
∂z̄i

, i = 1, . . . , n.
This holds in general for any complex manifold M .

• TM ⊗ C = T (1,0)M ⊕ T (0,1)M , T ∗M ⊗ C = T ∗(1,0)M ⊕ T ∗(0,1)M , and d = ∂ + ∂̄.

• f is holomorphic if and only if ∂̄f = 0.

•
∧k

(T ∗M⊗C) =
⊕

p+q=k

∧p,q
M , where

∧p,q
M =

∧p
(T ∗(1,0)M)⊗

∧q
(T ∗(0,1)M). Ωk(M) =

⊕
p+q=k Ωp,q(M).

• d = ∂ + ∂̄ extends to forms:

∂ : Ωp,q(M)→ Ωp+1,q(M), Ωp,q(M)→ Ωp,q+1(M).

And d2 = 0 implies ∂2 = ∂̄2 = 0, ∂∂̄ + ∂̄∂ = 0.

A smooth C-vector bundle π : E →M has local trivialization

φα : π−1(Uα)→ Uα × Ck,

such that the transition map

φαβ = φαφ
−1
β : (Uα ∩ Uβ)× Ck → (Uα ∩ Uβ)× Ck

is given by (x, v) 7→ (x, gαβ(x)v) where gαβ : Uα ∩ Uβ → GL(k,C) is smooth. We say that π is holomorphic
if gαβ is holomorphic.

Example 4.2.2. Let M = CPn, with homogeneous coordinates [z0, . . . , zn]. Let Ui = {zi 6= 0} and the local
chart is ϕα : Ui → Cn,

[z0, . . . , zn] 7→
(
z0

zi
, . . . ,

ẑi
zi
, . . . ,

zn
zi

)
.

Then ϕij = ϕiϕ
−1
j : ϕj(Ui ∩ Uj)→ ϕi(Ui ∩ Uj) is holomorphic. Consider the trivial line bundle Ui ∩ C. We

glue them together by

gij : Ui ∩ Uj → GL(k,C), [z0, . . . , zn] 7→
(
zi
zj

)k
, k ∈ Z.

Clearly the cocycle condition gijgjkgki = 1 is satisfied and thus we have a homolomorphic line bundle

Lk → CPn,

which is often denoted by O(k).

Example 4.2.3. For any complex manifold M , T (1,0)M , T ∗(1,0)M are holomorphic vector bundles over M .
(∂̄gij = 0 =⇒ ∂̄(∂gij) = 0.)
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Let π : E → M be a holomorphic vector bundle. Then we have a local frame e1, . . . , ek which is
“holomorphic” in the sense that if e′1, . . . , e

′
k is another such frame, then e′i =

∑
aijej where aij ’s are

holomorphic. Hence, if s ∈ C∞(M,E) is a smooth section, then s = siei and we can define

∂̄Es = ∂̄si ⊗ ei ∈ C∞(M,T ∗(0,1)M ⊗ E).

The operator ∂̄E : Ω(0,0)(M,E)→ Ω(0,1)(M,E) is called the Dolbeault operator.

Example 4.2.4. If e1, . . . , ek is a holomorphic local frame, then ∂̄Eei = 0.

Like the exterior differential d, the Dolbeault operator extends to

∂̄E : Ω(0,q)(M,E)→ Ω(0,q+1)(M,E)

using Leibniz rule
∂̄E(ω ⊗ s) = (∂̄ω)⊗ s+ (−1)degωω ⊗ ∂̄Es.

We get the Dolbeault complex

0→ Ω(0,0)(M,E)
∂̄E−−→ Ω(0,1)(M,E)

∂̄E−−→ · · · ∂̄E−−→ Ω(0,n)(M,E)→ 0, ∂̄2
E = 0.

The Dolbeault cohomology is

H0,q(M,E) =
ker ∂̄E |Ω0,q

im ∂̄E |Ω0,q−1

.

Example 4.2.5. H0,0(M,E) is the set of global sections of π : E →M .

Remark. Take E =
∧p

(T ∗(1,0)M). Then Ω0,q(M,E) = Ωp,q(M).

Recall that a connection on π : E →M is a map

∇ : C∞(M,E)→ C∞(M,T ∗M ⊗R E).

Since E = C⊗C E, we have T ∗M ⊗R E = (T ∗M ⊗R C)⊗C E. Hence, there is a decomposition

∇ = ∇′ +∇′′, ∇′ : C∞(M,E)→ C∞(M,T ∗(1,0)M ⊗ E), ∇′′ : C∞(M,E)→ C∞(M,T ∗(0,1)M ⊗ E).

We say that ∇ is compatible with the holomorphic structure if ∇′′ = ∂̄E .

Definition 4.3. A connection ∇ on a vector bundle (not necessarily holomorphic) E also induces a connec-
tion 1-form ω ∈ Ω1(M,End(E)). To define this, let e1, · · · , ek be a local frame, and let ωji ∈ Ω1(M) such
that

∇ei =

k∑
j=1

ωji ej

In fact, it is not hard to show via Leibnitz rule that ∇ = d+ω. Conversely, ω ∈ Ω1(M,End(E)) induces
a connection via ∇ = d+ ω.

Theorem 4.2 (Chern connection). Every holomorphic vector bundle π : E → M with a hermitian metric
admits a unique connection (called the Chern connection) compatible with both the holomorphic structure
and the hermitian metric, i.e.,

1. ∇′′ = ∂̄E,

2. d〈s, t〉 = 〈∇s, t〉+ 〈s,∇t〉, for any s, t ∈ C∞(M,E).

Proof. Uniqueness. Let (ei) be a local holomorphic frame, hij = 〈ei, ej〉 and H = (hij). Then

dhij = 〈∇ei, ej〉+ 〈ei,∇ej〉.

Since
∇ei = ∇′ei +∇′′ei = ∇′ei + ∂̄Eei = ∇′ei = ωji ej

21



Math 241B Determinants, Analytic Torsion, and Mirror Symmetry Winter 2020

where ωji ’s are (1, 0)-form (connection form), we have

dhij = ∂hij + ∂̄hij = ωki hkj + ω̄kj hik =⇒ ∂hij = ωki hkj , ∂̄hij = ω̄kkhik.

Therefore, (ωji ) = ∂H ·H−1 is uniquely determined.

Existence. Define ω = (ωji ) = ∂H ·H−1. Then one can check that ∇ = d+ ω is a Chern connection.

In particular, the connection 1-form of a Chern connection is (ωji ) = ∂H ·H−1 (as outlined in the above
proof).

Definition 4.4. The curvature of a connection ∇ is a 2-form defined by Ω = ∇ ◦∇. This can be checked
to be C∞-linear (and thus a tensor), and in fact Ω = dω + ω ∧ ω.

Example 4.4.1. Suppose that L → M is a holomorphic line bundle with hermitian metric and a locally
nonvanishing holomorphic section e. Then h = 〈e, e〉 and the connection 1-form associated to the Chern
connection is

ω = (∂h) · h−1 =
∂h

h
= ∂ lnh

Since L is a line bundle, the ω ∧ ω part of the curvature tensor vanishes. Hence, the curvature will be

Ω = dω = (∂ + ∂)∂ lnh = ∂∂ lnh

In particular, the curvature is a (1,1) form Ω ∈ Ω(1,1)(L).

Remark. This is a feature of Chern connections. I.e. a connection over a hermitian vector bundle is Chern
if and only if the connection is a (1,1) form.

For the rest of this section, whenever we talk about the curvature of a hermitian vector bundle, we mean
with respect to the Chern connection.

4.3 Holomorphic Determinant Line Bundles

Let B be a complex manifold, dimCB = m. For i = 0, 1, · · · , `, let Ei → B be a sequence of finite rank
holomorphic vector bundles, with a chain complex structure:

0→ E0
v−→ E1

v−→ · · · v−→ E` → 0

i.e. v are holomorphic vector bundle homomorphisms (∂v = 0), with v2 = 0.

Definition 4.5. The above defines a holomorphic chain complex, denoted (E, v)

If we endow the Ei’s with hermitian metrics, then the corresponding determinant bundle

λ = (detE0)−1 ⊗ (DetE1)⊗ (detE2)−1 ⊗ · · ·

will be a holomorphic line bundle endowed with a natural hermitian metric. To do this, we can find a
local holomorphic frame from the construction in section 4.1. Then it follows that there is a metric on each
determinant bundle that we may then multiply together to get the metric on λ.

Furthermore, if (E, v) is acyclic, then we may find a canonical nonvanishing section of λ via the torsion
T (v) ∈ Γ(λ). The curvature of λ is thus

−∂∂ ln |T (v)|2 = −2∂∂ ln τ(v)

However, we may also find the curvature of λ by first considering the curvatures of each Ei. Explicitly,
let Ωi be the curvature of Ei. Then we may show that the curvature of λ is

∑̀
i=0

(−1)i+1tr(Ωi)

by showing that
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1. The curvature of detEi is ΩdetE = tr(Ωi)

2. The curvature of a tensor product E ⊗ E′ is ΩE⊗E′ = ΩE ⊗ 1E′ + 1E ⊗ ΩE′

3. The curvature of the dual bundle of a line bundle L−1 is negative of the curvature of L

Then it follows that we have the equality

∑̀
i=0

(−1)i+1tr(Ωi) = −2∂∂ ln τ(v)

We now proceed to discuss another perspective that will generalize well in the infinite dimensional case.
Write E =

⊕
Ei.

Definition 4.6. (Number operator) Let N : E → E by N(s) = j · s, for s ∈ Ej . (So it multiplies elements
of Ej by the integer j)

Definition 4.7. (Sign operator) Let σ : E → E by N(s) = (−1)j · s, for s ∈ Ej . This will split E into even
and odd parts via +1 and -1 eigenspace decomposition (i.e. a Z2-grading). So here we have E = E+ ⊕ E−
by E+ = E0 ⊕ E2 ⊕ · · · and E− = E1 ⊕ E3 ⊕ · · · .

We also write v∗ : Ej → Ej+1 to be the adjoint of v with respect to the hermitian metric on E. This gives
rise to the corresponding Dirac operator V = v+ v∗. Noting that V reverses parity (i.e. V : E± → E∓), we
may thus write it in block antidiagonal form with respect to the decomposition E = E+ ⊕ E−

V =

(
0 v−

v+ 0

)
In addition, the Z2 grading also gives us a supertrace. For A ∈ Γ(M,End(E)), this is defined by

Trs(A) = tr(σ ◦A)

We may also extend this to Ω∗(M,End(E)) by Trs(ωA) = ωTrs(A).
Now let ∇ =

⊕
∇(i) be the Chern connection over E. For u > 0, we define

Au = ∇+
√
uV

This is the first example of a superconnection; the discussion here is unfortunately quite vague, for more
details on the definition of superconnection, read ”Heat Kernels and Dirac Operators” by Berline-Getzler-
Vergne.

Note that the curvature will, as before, be an element of Ω∗(M,End(E)) (i.e. no differentiation occurs).
To see this, first

A2
u = ∇2 +

√
u(V∇+∇V ) + uV 2

The proof will thus follow if we can show (V∇+∇V ) is 0th order. This follows from the Bianchi identities
(?).

We now define a fiberwise zeta function arising from E:

ζE(s) =
−1

Γ(s)

∫ ∞
0

us−1TrS(N · exp−A2
u)du

Here s ∈ C and Γ is the gamma function.

Proposition 4.3. ζE(s) is holomorphic for Re(s) > 0. Furthermore, it analytically extends to a holomorphic
function over C

Do note that this is a ζ-function defined over every point b ∈ B, and that it outputs E-valued differential
forms. The proof of analyticity is trivial because Au is a finite dimensional operator.
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Example 4.7.1. The degree 0 part of ζE(s) is

[ζE(s)]0 =
−1

Γ(s)

∫ ∞
0

us−1TrS(N · exp−uV 2)du

Since V 2 does not change the differential grading.

In fact for acyclic chain complexes, there is more to say

Theorem 4.4. If the chain complex (E, v) is acyclic, then

Trs(exp−∇2) = ∂∂ζ ′E(0)

For example, looking at the degree 2 part of the equation, we have that

Trs(−∇2) = ∂∂[ζ ′E(0)]0

Proof. The key to this lies in the transgression formula:

∂

∂u
Trs(expA2

u) =
1

u
∂∂Trs(N · exp−A2

u)du

(To be proven at a later date). Assuming that the formula is true, the theorem then follows via integration
of the above identity

Trs(expA2
u)
∣∣∣∞
u=0

=

∫ ∞
0

1

u
∂∂Trs(N · exp−A2

u)du

Now when (E, v) is acyclic V is invertible (from a Hodge decomposition). Computing, the LHS will thus be

Trs(expA2
u)
∣∣∣∞
u=0

= −Trs(exp−∇2)

and the RHS can be computed via first noting that

ζ ′E(0) = −
∫ 1

0

u−1[TrS(N · exp−A2
u)− Trs(N · exp−∇2)]du

+

∫ ∞
1

u−1TrS(N · exp−A2
u)du+ Γ(1)Trs(N · exp−∇2)

Then from Chern-Weil theory,

4.4 Aside on Chern-Weil Theory

Roughly speaking, the Chern-Weil theory can be seen as a “geometric” theory of characteristic classes, which
relates the local geometric information (such as curvature) to the global topological properties of the vector
bundle.

LetM be a real smooth manifold, E →M a vector bundle, and∇ a connection on E; that is, a (real) linear
map C∞(M,E)→ Ω1(M,E) satisfying ∇ (f · s) = (df)⊗ s+ f · ∇s for all s ∈ C∞(M,E) and f ∈ C∞(M).
Note that the domain of definition of ∇ can be extended over all (E-valued) forms Ω∗(M,E). Thus from
this connection we have also defined its curvature Ω = ∇2. The curvature can also be seen as a element
of Ω2(M,End(E)).

Example 4.7.2. Let E = M×Rn be the trivial bundle, then just setting∇ = d, the exterior differential, defines
a connection. This connection has zero curvature since Ω = d2 = 0. More generally, pick A ∈ Ω1(M,Mk(R)),
then ∇ = d+A also defines a connection, with its curvature Ω = dA+A ∧A.

Remark. It can be shown that any connection on E →M will look like d+A locally (or equivalently, on a
trivial bundle).
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Remark. Given connection ∇ and a vector field X on M , we may obtain operators ∇X by substituting X
into the form obtained as the value of ∇. In this way, it can be shown that our curvature has the usual
expression

Ω(X,Y )s = ∇X∇Y (s)−∇Y∇X(s)−∇[X,Y ](s), (21)

for vector fields X,Y and bundle section s.

We have also defined the trace functional Tr : Ω∗(M,End(E))→ Ω∗(M) for which Tr(ω⊗A) := ωTr(A)
for ω ∈ Ω∗(M) and A ∈ C∞(M,End(E)). Abbreviate ω ⊗ A by ωA, we define [ωA, ηB] := ωA ∧ ηB −
(−1)degω·deg η(ηB) ∧ (ωA). From this definition we easily see that Tr([ωA, ηB]) = 0.

Example 4.7.3. Let ∇ be a connection on E and A ∈ C∞(M,End(E)). For the curvature Ω = ∇2 ∈
Ω2(M,End(E)), we have [Ω, A] = ΩA − AΩ (note ΩA means “matrix multiplication”, noting that End(E)
is in fact a bundle of algebras??); so we can check that Tr([Ω, A]) = 0.

Lemma 4.5. Let ∇ be a connection on E, then for any A ∈ Ω∗(M,End(E)), we have

[∇, A] = ∇ ◦A− (−1)degA(A ◦ ∇), (22)

which is an element of Ω∗(M,End(E)) (with the action of each term interpreted accordingly). And d(Tr(A)) =
Tr([∇, A]).

Proof. It can be checked locally that d(Tr(A)) = Tr(dA). But locally∇ = d+B for someB ∈ Ω1(M,End(E)),
thus [∇, A] = dA+ [A,B], giving that Tr([∇, A]) = Tr(dA).

Example 4.7.4. We have [∇,Ω] = [∇,∇2] = ∇ ◦ ∇2 −∇2 ◦ ∇ = 0, so d(Tr(Ω)) = Tr([∇,Ω]) = 0, hence we
see that Tr(Ω) is a closed form in Ω∗(M).

In general, given a formal power series f(x) = a0 + a1x+ a2x
2 + · · · , we put

f(Ω) := a0 IdE +a1Ω + a2Ω2 + · · · ∈ Ω∗(M,End(E)). (23)

Theorem 4.6 (Chern-Weil). Given connection ∇ on a bundle E → M , its curvature Ω and a power
series f(Ω) of the curvature like above, then

(i) Tr(f(Ω)) ∈ Ω∗(M) is a closed form.

(ii) The cohomology class [Tr(f(Ω))] ∈ H∗dR(M) in independent of the connection.

Proof. For (i), we use the lemma and cook up a similar argument for f(Ω) as that for Ω in the above example.
Mainly we prove (ii). In fact, we shall show that if {∇t}, t ∈ [0, 1] is any (smooth) family of connections,

then

Tr(f(Ω(1)))− Tr(f(Ω(0))) = dαf , with αf =

∫ 1

0

Tr

(
d∇t

dt
f ′(Ω(t))

)
dt, (24)

and hence [Tr(f(Ω(1)))] and [Tr(f(Ω(0)))] will represent the same cohomology class. Here d∇t
dt is seen as

an element in Ω1(M,End(E)). Moreover, for any two connections ∇(1) and ∇(0), we can always “connect”
them by a line segment ∇(t) = t∇(1) + (1− t)∇(0), so formula (24) leads to our result.

To prove (24), we consider M̃ = M × [0, 1] with projection π :→ M s.t. (x, t) 7→ x, and put Ẽ = π∗E.
Define connection ∇̃ on Ẽ by ∇̃ = ∇(t) + dt ∧ ∂

∂t . From (i) it follows that

d̃
(

Tr(f(Ω̃))
)

= 0, (25)

where d̃ = d+ dt ∧ ∂
∂t and Ω̃ = ∇̃2 = Ω(t) + dt ∧ d∇(t)

dt . After some calculation, we will be able to find

Tr(f(Ω̃)) = Tr(f(Ω(t))) + dt ∧ Tr

(
d∇(t)

dt
f ′(Ω(t))

)
. (26)

Then expand (25) and look at the dt part we find

∂

∂t
Tr(f(Ω(t))) = d

(
Tr

(
d∇(t)

dt
f ′(Ω(t))

))
. (27)

Thus the result follows from integration.
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Remark. To compute formula (26) we write f(Ω̃) = a0 IdẼ +a1Ω̃ + a2Ω̃ + · · · where Ω̃ = Ω(t) + dt ∧ d∇(t)

dt ,

then
(

Ω(t) + dt ∧ d∇(t)

dt

)k
= (Ω(t))k + · · · , etc., the only thing to note is that taking the trace commutes the

wedge products, and hence allows terms to cancel.

Next we shall promote the set up to superconnections. Let σ : E → E be a Z2-grading, namely σ2 = IdE ,
giving the decomposition E = E+⊕E−. For A ∈ C∞(M,End(E)), we have the supertrace TrS(A) = Tr(σA).
So naturally we can write

A =

(
A11 A12

A21 A22

)
(28)

so TrS(A) = Tr(A11)−Tr(A22). The definition extends to TrS : Ω∗(M,End(E))→ Ω∗(M) with TrS(ω⊗A) =
ωTrS(A) upon noting that End(E) also has a Z2-grading End(E) = End+(E)⊕ End−(E), where End+(E)
is the block diagonal part and End−(E) the block off-diagonal part.

Let V ∈ C∞(M,End−(E)), ∇ = ∇E+⊕∇E− , and put A = ∇+V , which is called the “superconnection”
on E. Note that (we will show?) the curvature A2 is seen as an element of Ω∗(M,End(E)).

Example 4.7.5. We have constructed E =
⊕l

i=0E
i with σ = (−1)N , N the number operator. Thus writing

any A =
∑l
i=0Ai with Ai ∈ Ω∗(M,End(Ei)), we will have TrS(A) =

∑l
i=0(−1)i Tr(Ai).

Analogously we have

Theorem 4.7 (Super Chern-Weil). Same setting as above, then

(i) TrS(f(A2)) ∈ Ω∗(M) is a closed form.

(ii) The cohomology class [TrS(f(A2))] is independent of the superconnection.

To prove it, we shall consider a similar identity to (27) for the family At = ∇+ tV .

5 Chern-Weil Theorem on Complex Manifolds

Let {Ei} be a finite family of complex vector bundles equipped with a Hermitian metric, and suppose we
have a holomorphic chain complex

0
v→ E0

v→ E1
v→ . . .

v→ El
v→ 0

v2 = 0 and v is a holomorphic line bundle homomorphism. Now let E =
⊕l

i=0Ei = E+ ⊕ E− with
Z2-grading σ = (−1)N where N is the number operator. This gives the usual decomposition E = E+ ⊕E−
with E+ the direct sum over even i, E− over odd i. This means that v, v∗ and V = v + v∗ are maps

v :E± → E∓,

v∗ :E∓ → E±,

V :E± → E∓,

that is, each of v, v∗, V belong to the space End−(E) of block off-diagonal maps on E.

Let ∇Ei be the Chern connection on Ei and define ∇ =
⊕l

i=1∇Ei . Akin to the real case, we now define
family of super-connection Aa = ∇+ V a for a complex-valued and Va = av + av∗ ∈ End−(E).

Theorem 5.1. (1) For all a ∈ ∇, Trs[e
−A2

] and Trs[Ne
−A2] consist of sums of (p, p)-forms.

(2) The first of the above expressions is both ∂- and ∂-closed.
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(3) The following identities hold:

∂

∂a
Trs[e

−A2

] = −∂Trs[ve−A
2

],

∂

∂a
Trs[e

−A2

] = −∂Trs[v∗e−A
2

];

∂

∂a
Trs[ave

−A2

] = −∂Trs[Ne−A
2

],

∂

∂a
Trs[av

∗e−A
2

] = +∂Trs[Ne
−A2

].

In particular, the above imply

∂

∂a
Trs[e

−A2

] =
1

a
∂∂ Trs[Ne

−A2

],

∂

∂a
Trs[e

−A2

] = −1

a
∂∂ Trs[Ne

−A2

].

We remark here that each term of a complex differential form is has a degree specified by two parameters
(p, q), with p the degree of its holomorphic part and q the degree of its anti-holomorphic part.

Proof. Observe that
(∇+ Va)2 = ∇2 + |a|2(vv∗ + v∗v) + (a∇′v + a∇′′v∗),

where ∇ = ∇′ + ∇′′ is the decomposition of ∇ into its holomorphic and anti-holomorphic parts. Note
that ∇2 is a (1, 1)-form, |a|2(vv∗ + v∗v) is a (0, 0)-form, and a∇′v + a∇′′v∗ is the sum of a (1, 0)- and a
(0, 1)-form.

Therefore we can we can conclude (1). Also, using Chern-Weil and denoting d = ∂ + ∂, we have

dTrs[e
−A2

] = ∂Trs[e
−A2

] + ∂Trs[e
−A2

] = 0,

which is a sum of forms of type (p + 1, p) and (p, p + 1). Hence, each term vanishes individually, so

Trs[e
−A2

] is both ∂- and ∂-closed, as claimed.

Now we move to the first two identities in (3). We apply the same procedure as in the real case, only
this on B ×∇: (

∂ + da
∂

∂a

)
Trs

[
exp(∇+ da

∂

∂a
+ da

∂

∂a
+ V a)2

]
= 0,(

∂ + da
∂

∂a

)
Trs

[
exp(∇+ da

∂

∂a
+ da

∂

∂a
+ V a)2

]
= 0.

But observe that ∇+ da ∂
∂a + da ∂

∂a = A2
a + dav + dav∗, which gives us

Trs

[
exp(∇+ da

∂

∂a
+ da

∂

∂a
+ V a)2

]
= da ∧ da ∧ ε+ Trs[e

−A2

]− da Trs[ve−A
2

]− da Trs[v∗e−A
2

],

where ε is some differential form. Using one of the identities above, setting the da term to 0, we find

∂

∂a
Trs[e

−A2
a ] + ∂Trs[ve

−A2
a ] = 0,

giving us the first identity in (3). The second follows in the same way after setting the da term to 0.

Finally, we compute dTrs[Ne
−A2

a ]:

dTrs[Ne
−A2

a ] = ...

= Trs[(−av + av∗)e−A
2
a ],

giving us the second pair of identities in (3).
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6 Holomorphic determinant line bundles in infinite dimension

First we make some remarks about the real setting before returning to the complex setting of interest to us.

Let π : M → B be a submersion from a real total manifold M to a real base manifold B. Having a
submersion π means that for each y ∈ B, the fibers π−1(y) = Zy are smooth real manifolds diffeomorphic
to each other. That is, each x ∈ M with π(x) = y has a neighborhood isomorphic to the product manifold
B × π−1(y) (local triviality). Setting Z ∼= Zy, this information amounts to a fiber bundle with the diagram

Z ↪−→M
π→ B.

As we’ve previously done, we can define the vertical tangent bundle TVM ⊂ TM to be vector fields on M
that are tangent to the fibers, or equivalently, the vector fields that descend via π to the trivial vector field on
B. For simplicity we denote TZ = TVM . We can further define a complementary subbundle THM ⊂ TM
such that TM = TH ⊕ TZ with corresponding projections pH : TM → THM and pZ : TM → TZ. We call
THM the horizontal tangent bundle.

We remark that THM ∼= π∗TB, so any vector field in TB lifts to a vector field in THM , which we call
the horizontal lift.

Now equip B,Z with smooth metrics gB , gZ . We can then define a smooth metric g = π∗gB + gZ on the
total manifold M , called the submersion metric.

Let nablaL denote the Levi-Civita connection on TM . We let ∇Z = pZ∇L denote the projection of ∇L
on TZ and RZ = (∇Z)2 denote the curvature on TZ, each of which is compatible with the metric gZ by
construction.

The machinery explained above largely passes to the complex setting, but with some subtleties which we
mention here. For complex manifolds M,B, we now require the submersion π : M → B to be holomorphic.
We also require the fibers Z ∼= Zy to be compact, complex manifolds, and will later impose even stronger
conditions. We now have a short-exact sequence of holomorphic vector bundles

0→ T (1,0)Z → T (1,0)M → π∗T (1,0)B → 0.

The local triviality near a base point y of this vector bundle may not inherit a natural complex structure
– the short exact sequence above may not split holomorphically.

We now introduce an important definition:

Definition 6.1. The triple (π, gZ , THM) is called a Kähler fibration if there exists a smooth (1, 1)-form ω
on M such that:

1. dω = 0;

2. for all X ∈ TZ and Y ∈ THM , we have ω(X,Y ) = 0;

3. for all X,Y ∈ TZ, we have ω(X,Y ) = 〈X, JY 〉, where J2 = −I.

We remark that the form ω restricts to a Kähler form on the fibers of π, meaning that that the fibers
are Kähler manifolds.

Example. Let (M, g) be a Kähler manifold with gZ = g
∣∣
TZ

, THM = (TZ)⊥g . By definition M is
equipped with a Kähler form ω that is closed and satisfies (1) and (2) over TM . By restricting to TZ, we
observe that the triple (π, gZ , THM) defines a Kähler fibration.
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Example. Let (Z, ω) be a Kähler manifold and define M = Z × B π→ B for any complex manifold B.
Then (π, gZ , ω) defines a Kähler fibration.

Given a Kähler fibration (π, gZ , THM), the connection ∇Z turns out to be precisely the Chern connection
on T (1,0)Z. In particular, when M is a a Kähler manifold, the Levi-Civita connection and then Chern
connection are the same.

Now let ξ →M be another holomorphic vector bundle.

Definition 6.2. For 0 ≤ p ≤ l, we define Ep = C∞(M,
∧p

(T ∗(0,1)Z)⊗ξ), and we further define its restriction
Epy = C∞(Zy,

∧p
(T ∗(0,1)Zy)⊗ ξ

∣∣
Zy

).

We can think of Ep an infinite-dimensional vector bundle.

For each y ∈ B, we have ∂
Zy

: Epy → Ep+1
y . We define ∂y =

√
2 ∂

Zy
. The factor

√
2 is a convention

related to the identity ∆d = 2∆∂ , where d = ∂ + ∂.

Theorem 6.1. There is a holomorphic line bundle λ → B such that for every y ∈ B, the fibers λy ∼=
(DetH0,0(Zy, ξ

∣∣
Zy

))−1 ⊗ (DetH0,1(Zy, ξ
∣∣
Zy

))−1 ⊗ ....

Proof. Let 〈, 〉 be a Hermitian structure on Ep. We can define an L2 metric on global sections s, s′ of Ep of
the form ∫

Zy

〈s, s′〉.

With respect to this metric, we have the adjoint ∂
∗
y =
√

2 (∂
Zy

)∗, and we can define a family of Dirac
operators

Dy = ∂y + ∂
∗
y.

Next, for all a ∈ R, we define Ua = {y ∈ B : a /∈ SpecD2
y}, which is the subset of B for which a is in the

resolvent set of the Laplacian D2
y. We further define Ka,p to be the direct sum of eigenspaces of D2

y with
eigenvalue less than a, so that K∞,p = L2(Epy). For a fixed, we have the holomorphic line bundle

0→ Ka,0 ∂→ Ka,1 ∂→ . . .
∂→ Ka,l → 0,

from which we obtain a determinant line bundle λa → Ua. We can similarly define Ka,b,p = {y ∈ B :
a /∈ SpecD2

y} to be the direct sum of eigenspaces of D2
y with eigenvalues in the interval (a, b), giving the

holomorphic chain complex

0→ Ka,b,0 ∂→ Ka,b,1 ∂→ . . .
∂→ Ka,b,l → 0.

This chain complex is in fact acyclic, so we obtain nowhere vanishing ”holomorphic” sections T (∂
a,b

) ∈
λa,b on the determinant line bundle λa,b.

We remark that in general, if π : M → B is a holomorphic submersion where each fiber is a compact,
complex manifold, the Hodge numbers hp,q(Zy) = dimHp,q(Zy) may not be constant in y. However, we
have the following stability result: for any y0 ∈ B such that Zy0 is Kähler, we have hp,q(Zy) = hp,q(Zy0) for
y near y0. Therefore the Hodge numbers are constant in the case that each fiber is Kähler. For simplicity,
we assume dimHp(Zy, ξ

∣∣
Zy

) is constant, giving us a smooth vector bundle

dimHp(Zy, ξ
∣∣
Zy

)→ y ∈ B.

Then we have a vector bundle isomorphism

λ ∼= (DetH0(Zy, ξ
∣∣
Zy

))−1 ⊗ (DetH1(Zy, ξ
∣∣
Zy

))−1 ⊗ ...
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The Hodge theorem states that Hp(Zy, ξ
∣∣
Zy

) = kerD2
y ⊂ E2

y inherits an L2 metric, which in turn induces

an L2 metric on the determinant line bundle λ via the vector bundle isomorphism mentioned at the end of
last class. We denote this L2 metric by | · |. We define the Quillen metric ‖ · ‖ to be

‖ · ‖ = | · | exp(−1

2
ζ ′y(0)),

where

ζy =
−1

Γ(s)

∫ ∞
0

us−1Trs(Nv exp(−uD2
y)) du.

We now state theorem summarizing some important results about this metric.

Theorem 6.2 (Quillen, Bismut-Gillet-Soule). The Quillen metric defines a Hermitian metric on λ, the
curvature of its Chern connection is given by

2πi[

∫
Z

Td(−R
Z

2πi
) ∧ Tr

(
exp(− R

ξ

2πi
)

)
](2).

Here [·](2) means taking the 2-form part. Since TZ is a vector bundle on M with connection ∇Z defined
above, while RZ is the curvature with respect to ∇Z . ξ is a holomorphic vector bundle on M with Chern
connection ∇ξ, Rξ is the curvature with respect to ∇ξ.
Remark 6.2.1. This theorem has a lot of applications in many fields, including Arakalov Geometry and
Mirror symmetry.

Outline of the Proof. Notice that, if s is a local section of λ, then

R‖·‖ = ∂∂̄ log ‖s‖2 = ∂∂̄ log |s|2 − ∂∂̄ζ ′(0) = R‖·‖ − ∂∂̄ζ ′(0),

i.e.
R‖·‖ −R|·| = −∂∂̄ζ ′(0),

which looks like double transgression formula.
Indeed, in finite dimensional case, let Au = ∇+

√
uV , then we have

∂

∂u
Trs[exp(−A2

u)] =
1

u
∂∂̄Trs[N exp(−A2

u)],

which implies

Trs[exp(−A2
u)]|Tu=ε = ∂∂̄

∫ T

ε

1

u
Trs[N exp(−A2

u)]du.

Notice that A2
u = ∇2 +

√
u[∇, V ] + uV 2, limu→∞ Trs[exp(−A2

u)](2) = Trs[exp(−∇02
)](2), where ∇0 is the

projection of ∇ onto kerV 2 ∼= H∗(E, V ).
Moreover, limu→0 Trs[exp(−A2

u)] = Trs[exp(−∇2)].

Consequently, Trs[exp(−∇2)]− Trs[exp(−∇02
)] = ∂∂̄ζ ′(0).

For infinite dimensional case, we consider Au = ∇̃+
√
uD, where ∇̃ is a connection on Ep → B defined

as follows:
For any Y ∈ C∞(B, TB), s ∈ C∞(B,Ep) = C∞(M,ΛPT ∗(0,1)Z ⊗ ξ),

∇̃Y s := ∇Z⊗ξ
Y H

s.

It turns out that ∇̃ is the Chern connection on Ep → B with respect to L2 metric.
In this case, we still have

∂

∂u
Trs[exp(−A2

u)](2) =
1

u
∂∂̄Trs[Nv exp(−A2

u)].

As before, limu→∞ Trs[exp(−A2
u)](2) = Trs[exp(−∇02

)](2) = R|·|, where ∇̃0 is the projection of ∇̃ on
kerD2 ∼= H0,∗(Z, ξZ).

limu→0 Trs[exp(−A2
u)](2) = 2πi[

∫
Z
Td(−R

Z

2πi ) ∧ Tr(exp(− Rξ

2πi ))](2).

Hence, R‖·‖ = R|·| − ∂∂̄ζ ′(0) = 2πi[
∫
Z
Td(−R

Z

2πi ) ∧ Tr(exp(− Rξ

2πi ))](2).
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7 Mirror Symmetry at Higher Genus

7.1 Introduction

Mirror symmetry predicts some symmetry about Calabi-Yau manifold, Fano Manifold, Landau-ginzburg
model etc.

Roughly speaking, we have

A Model B Model

Symplectic Geometry Complex Geometry

Fg(Q) =
∑

d≥0 Ng,dQ
d

g = 0: Deformation of Complex
Structure using Period integral
g ≥ 1: BCOV holomorphic

anomaly formulas

Here Ng,d is the Gromov-Witten invariants, which counts the number of holomorphic curves of genus g,
degree d in Calabi-yau Manifold.

In particular, g = 1 holomorphic anomaly formula is almost equivalent to curvature formula for Quillen
metric. Moreover, holomorphic anomaly formula of higher genus is related to that of g = 1.

7.2 Calabi-Yau manifolds and their moduli

First of all, Kahler manifold is a complex manifold with an Hermitian metric g = gij̄dz
i⊗dz̄j , whose Kahler

form w =
√
−1gij̄dz

i ∧ dz̄j is closed.
A Key feature of Kahler manifold is

∆d = 2∆∂ = 2∆∂̄ ,

where

∆d = dd∗ + d∗d (Hodge Laplacian);

∆∂ = ∂∂∗ + ∂∗∂;

∆∂̄ = ∂̄∂̄
∗

+ ∂̄
∗
∂̄ (Dolbeault Laplacian).

This implies the so called Hodge decomposition for compact Kahler manifold:

Hk(M) =
⊕
p+q=k

Hp,q(M).

Remark 7.0.1. Since ∆d is real, we have Hp,q = Hq,p, which implies hp,q = hq,p. Here hp,q = dimHp,q is
so called Hodge numbers.

By Poincare duality, we have Hp,q ∼= Hn−p,n−q, where n = dimCM.

Example 7.0.1. 1. Cn with canonical metric g0 =
∑n
i=0 dzi ⊗ dz̄j is Kahler. Moreover, let Γ ⊂ Cn be a

lattice of rank 2n, then Cn/Γ is a compact Kahler manifold.

2. CPn = {[z0, z1, ...zn]} with Fubini-Study metric gFS is also Kahler, where locally,

wFS =
√
−1∂∂̄ log(

b∑
i=0

|zi|2).

3. Any Complex submanifold of a Kahler manifold is also Kahler.

Definition 7.1. A Calabi-Yau manifold is a Kähler manifold M whose canonical line bundle Det(T ∗(1,0)M)
is holomorphically trivial.
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Example 7.1.1. The previous Kähler manifolds Cn and Cn/Γ are also examples of Calabi-Yau manifolds.

Example 7.1.2. Consider CPn with homogeneous coordinates [z0, z1, . . . , zn], and let F (g) be a homogeneous
polynomial of degree d and whose only cut point is 0. Then the locus F (z0, . . . , zn) = 0 defines a Kähler
manifold. In fact we have the following from the adjunction formula:

F = 0 is Calabi-Yau ⇐⇒ d = n+ 1.

This gives us two more explicit examples of Calabi-Yau manifolds:

z4
0 + · · ·+ z4

3 = 0 ∈ CP3;

z5
0 + · · ·+ z5

4 = 0 ∈ CP4.

More generally, for a sufficiently small t, we have

z4
0 + · · ·+ z4

3 + tz0 . . . z3 = 0 ∈ CP3,

z5
0 + · · ·+ z5

4 + tz0 . . . z4 = 0 ∈ CP4

are Calabi-Yau.

We can construct a moduli space of Calabi-Yau structures on a manifold by identifying the Calabi-Yau
structures which are biholomorphic. We say that M1 and M2 are biholomorphic if there exists holomorphic
F : M1 →M2 with a holomorphic inverse.

Example 7.1.3. Elliptic curves. Let Γ ⊂ C where Γ = 〈τ1, τ2〉 and τ1, τ2 are linearly independent (here
C is thought of as a 2-dimensional vector space of R). We can assume that τ1 = 1 and τ2 = τ where τ lies
in the upper-half plane H. Unsurprisingly, we find that the elliptic curves corresponding to 〈1, τ〉 and 〈1, τ ′〉

are biholomorphic if and only if there is a matrix

(
a b
c d

)
∈ SL2(Z) such that

τ ′ =
aτ + b

cτ + d
.

Exercise. Any holomorphic map F : C/Γ→ C/Γ′ is induced by Γ̂ : C→ C which is linear.

Thus, H/SL2(Z) is the moduli space of 1-dimensional complex tori. We define Eτ = C/〈1, τ〉.

Example 7.1.4. Consider z0 + z2
1 + z2

2 = 0 in CP2. This is a 1-dimensional Calabi-Yau, so so it must be
associated with some τ ∈ H/SL2(Z). But which one? τ can be computed via the so-called ”period integral.”
Eτ has a nowhere-vanishing holomorphic 1-form dz, called the Calabi-Yau form (it is not exact on Eτ ).

H1(Eτ ) has a basis given by a : Z(t) = t, b : Z(t) = tτ for t ∈ [0, 1]. The pairing between dz and a, b
gives period integrals

πa =

∮
a

dz = 1

πa =

∮
b

dz = τ.

Now if we set X = {(τ, [z]) : τ ∈ H, [z] ∈ C/〈1, τ〉} and define the moduli space M = H/SL2(Z), the
projection map

π : X→M, (τ, [z])

is a holomorphic submersion fibers, where the fibers are denoted Eτ = Xτ = π−1(τ).

We have seen some particularly simple examples of Calabi-Yau manifolds. However, things are typically
much more difficult:
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• The moduli spaces can be bad.

• Higher-dimensional Calabi-Yaus do not typically admit an explicit description.

To inform our understanding of other Calabi-Yaus, we explore deformation theory. Specifically, we look
at deformations of complex structures using the Kodaira-Spencer maps. Some more definitions are necessary
here.

Definition 7.2. An almost complex structure (acs) is a fiberwise map J : TM → TM with J2 = −id. We
say that it is integrable if either of the following conditions hold{

[T (1,0)M,T (1,0)M ] ⊂ T (1,0)M i.e. T (1,0)M is integrable

NJ = 0 i.e., the so-called Nijenhaus tensor vanishes

It is a theorem due to Newlander-Niremberg that the above two conditions are equivalent.

Definition 7.3. A complex structure on M2n is an almost-complex structure that is integrable.

Any complex manifold has a canonical almost-complex structure which is integrable. The converse is
proved via the Newlander-Nirenberg theorem which states that J is integrable if and only if the Nijenhuis
tensor NJ vanishes.

Let J be a complex structure. A deformation of complex structures is a continuous family of almost
complex structures J(t) for t ∈ (−ε, ε) such that J(0) = J , NJ(t) = 0. We write the infintesimal deformation
by

η =
dJ(t)

dt

∣∣∣
t=0
∈ End(TM) = T ∗M ⊗R TM

We note that NJ(t) = 0 implies that ∂̄T (1,0)Mη = 0. Hence, η ∈ ker(∂̄T (1,0)M ), so this kernel will track all
the deformations of complex structures.

We now identify biholomorphic complex structures at the infintesimal level to get the formal tangent
space of complex structures. Let V be a vector field on M , and let F (t) : M →M be the flow (1 parameter
family of diffeomorphisms) generated by V . Via pullback, we may obtain the following family of complex
structures:

J(t) = (DF (t))−1 ◦ J ◦DF (t)

By construction, (M,J(t)) and (M,J) have a biholomorphism given by F (t). Then we have that

η =
dJ(t)

dt

∣∣∣
t=0

= ∂̄vn

where vn ∈ C∞(M,T (1,0)M) is given by v. Thus, we see that η ∈ in(∂̄T (1,0)M ) will be deformations of
complex structures in the same biholomorphic class. Thus, the formal tangent space of complex structures
at J will be contained in ker(∂̄T (1,0)M )/im(∂̄T (1,0)M ) = H(0,1)(M,T (1,0)M).

In fact, the formal tangent space of the moduli space of complex structures equals H0,1(M,T (1,0)M in
certain nice cases. However, in full generality there is some subtlety. The most important of these is the
issue of obstructedness: a cohomology class [η] ∈ H0,1(M,T (1,0)M) may not actually arise from a family of
complex structures. Fortunately, this problem disappears because of the Calabi-Yau condition because its
canonical line bundle vanishes. This is stated in the following theorem:

Theorem 7.1. (Tian-Todorov). For a complex Calabi-Yau with H0,0(M,T (1,0)M) = 0 (this condition
implies biholomorphisms are discrete), a deformation of its complex structure is unobstructed. In partic-
ular, the universal moduli space of complex structures is a smooth complex manifold with tangent space
H0,1(M,T (1,0)M).

Remark 7.1.1. A Calabi-Yau Mn with
∧n

T ∗(1,0)M trivial implies T (1,0)M ∼=
∧n−1

T ∗(0,1)M , which implies
H0,1(M,T ∗(0,1)M) = Hn−1,1M .

Example 7.3.1. If M is a 1-dimensional Calabi-Yau, dimH1−1,1M = H0,1M = h0,1 = 1, which agrees with
our previous discussion about elliptic curves.
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7.3 Weil-Petersson geometry of moduli space

For simplicity, M is a compact Calabi-Yau 3-fold. Thus there exist a nowhere-vanishing holomorphic (3,0)-
form Ω, referred as the Calabi-Yau 3-form. It is unique up to constant multiplication.
DenoteMM as moduli space of complex structures on M . By Kodaira-Spencer, this is a complex manifold.
Turns out that MM is Kahler, with a canonical choice of metric, called the Weil-Petersson metric.
Indeed, TMM

∼= H0,1(M,T (1,0)M).
For all u ∈ H0,1(M,T (1,0)M), we have iuΩ ∈ Ω2,1(M), where i denotes contraction. Then the Weil-Petersson
metric is ∀u, v ∈ H0,1(M,T (1,0)M),

(u, v)WP =

∫
M

(iuΩ) ∧ ivΩ∫
M

Ω ∧ Ω̄
.

Exercise. For τ ∈ H/SL(2,Z), Eτ = C/〈1, τ〉, compute ∂
∂τ as an element of H0,1(Eτ , T

(1,0)Eτ ), and hence(
∂
∂τ ,

∂
∂τ

)
WP

. (the answer should be the hyperbolic metric.)

Turns out that there is another way to look at the Weil-Petersson metric.
Let π : X → MM be a universal deformation. For each τ ∈ MM , Xτ = π−1(τ) is another Calabi-Yau
manifold. Therefore H3,0(Xτ ) ∼= C, trivialized by a choice of Calabi-Yau form Ωτ . This gives rise to a
holomorphic line bundle L →MM with Lτ = H3,0(Xτ ), τ ∈ MM . Physicists usually call this the vacuum
line bundle.
This line bundle has a natural Hermitian metric

||Ωτ ||2 = (Ωτ ,Ωτ ) =
√
−1

∫
Xτ

Ωτ ∧ Ωτ .

Hence the curvature of its Chern connection is given by

∂∂̄ log ||Ω||2,

where Ω is a local holomorphic section of L.
Now we have the miracle:

Theorem 7.2. ωWP = ∂∂̄ log ||Ω||2.

Corollary 7.2.1. Weil-Petersson metric is Kahler.

Proof. (Idea of proof) Let τ = (τa) be a local coordinate chart of MM . We have that ∂aΩ is equal to a
(3,0)-piece and a (2,1)-piece, which must equal to KaΩ + χa. Here χa = i∂/∂τaΩ.
Therefore,

∂a∂̄b log ||Ω||2

= ∂a

[
−1∫
Ω ∧ Ω̄

∫
Ω ∧ ∂bΩ̄

]

=

[
− 1(∫

Ω ∧ Ω̄
)2 ∫ ∂aΩ ∧ Ω̄

∫
Ω ∧ ∂bΩ̄

]
+

[
1∫

Ω ∧ Ω̄

∫
∂aΩ ∧ ∂bΩ̄

]
.

We claim that the above equals to ∫
χa ∧ χb∫
Ω ∧ Ω̄

.
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7.4 BCOV Torsion and Holomorphic Anomaly Equation

Let M be a compact Kahler manifold, with dimCM = n. ξ →M is a holomorphic vector bundle. We have
the determinant line bundle

λ(ξ) = ⊗nq=0(DetH(0,q)(M, ξ))(−1)q .

Note: this is the dual of the previous one.
It comes with a natural hermitian metric, the Quillen metric. Now, if π : M → X →M is a Kahler fibration
with typical fibre M .
ξ → X being holomorphic implies λ(ξ)→M being holomorphic line bundle, and the curvature of the Quillen
metric is

−2πi

[∫
M

Td

(
−RM

2πi

)
∧ ch

(
−Rξ

2πi

)][1,1]

,

where RM is curvature of vertical holomorphic tangent bundle.
T (1,0)M ⊂ T (1,0)X . (For simplicity, we drop ”(1,0)” notation later on), and

ch

(
− R

ξ

2πi

)
= Tr

(
exp− R

ξ

2πi

)
.

The standard notations are: For any complex vector bundle ξ →M of rank k,

c1(ξ) = Tr

(
− R

ξ

2πi

)
, ck(ξ) = det

(
− R

ξ

2πi

)
.

More generally,

det

(
I + t

−Rξ

2πi

)
= 1 +

k∑
i=1

ci(ξ)t
i,

where ci(ξ) is the i-th Chern class.
For a line bundle, c1 = −R

2πi .
Hence the curvature formula for Quillen metric is

c1(λ(ξ)) =

[∫
M

Td

(
−RTM

2πi

)
ch

(
−Rξ

2πi

)](1,1)

.

Here RM = RTM .
BCOV made the following choice for ξ:

ξ = ⊕np=1(−1)pp ∧p T ∗M.

This implies

λ = ⊗np,q=0(DetHp,q(M))(−1)p+qp →MM ,

which is called the BCOV line bundle.

Theorem 7.3. BCOV With the induced Quillen metric,

c1(λ) = − 1

12

[∫
M

c1(TM) · cn(TM)

](1,1)

Proof. We first note that by Bismut-Cheeger-Soule, we may express the right hand side as

c1(λ) =

[∫
M

Td(TM) ·
n∑
p=0

(−1)ppch(ΛpT ∗M)

](1,1)

(29)

Now, we will show that for any rank n bundle ξ → X, we have the following equality:

Td(ξ) ·
n∑
p=0

(−1)pch(Λpξ∗) = cn(ξ) (30)
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To see that this is true, let us first diagonalize the hermitian matrix −Rξ/(2π
√
−1) into the diagonal matrix

with entries γ1, · · · , γn. These are the so-called Chern roots. We then have the following equalities via direct
evaluation 

Td(ξ) =
∑n
i=1

γi
1−eγi

ch(ξ) =
∑n
i=1 e

γi

cn(ξ) =
∏n
i=1 γi

ch(Λpξ∗) =
∑n
i1,··· ,ip exp−

∑p
j=1 γij

(31)

Thus, we have the following equality

n∑
p=0

(−1)pch(Λpξ∗) =

n∑
p=1

n∑
i1,··· ,ip

exp−
p∑
j=1

γij =

n∏
i=1

(1− e−γi)

And plugging this and the first equality in the previous equation into (30) gives the desired equality. We
may now repeat the same process used above to obtain the equation

n∑
p=0

(−1)pxpch(Λpξ∗) =

n∏
i=1

(1− xe−γi)

Differentiation this at x = 1, we obtain

n∑
p=0

(−1)ppch(Λpξ∗) =
d

dx

n∏
i=1

(1− xe−γi)
∣∣∣
x=1

= n

n∏
i=1

(1− e−γi)−
n∑
i=1

∏
j 6=i

(1− e−γj )

Thus,

Td(ξ) ·
n∑
p=0

p(−1)pch(Λpξ∗) = ncn(ξ)−
n∑
i=1

γi
1− eγi

∏
j 6=i

γj

Now, noting the formal series expansion

1

1− ex
= 1 +

x

2
+

∞∑
i=1

(−1)i−1Bi
(2i)!

x2i

where Bi is the ith Bernoulli number, the previous equation becomes

Note that B2 = 1/6, which is where the 1/12 comes from. Now, in equation (29), we only care about
the (1,1) part, and since n degrees get integrated out, we only want the degree (n + 2) part of Td(ξ) ·∑n
p=0 p(−1)pch(Λpξ∗). This is precisely − 1

12cn(ξ)c1(ξ); plugging this equality into Bismut-Cheeger-Soule
with ξ = TM gives the desired result.

Now, from the Calabi Yau condition, the canonical bundle ΛnT ∗M is holomorphically trivial. Thus,

c1(M) = c1(TM) = −c1(T ∗M) = −c1(ΛnT ∗M) = 0

We also note Yau’s celebrated theorem,

Theorem 7.4. Let M be a Calabi Yau manifold. Then for each Kähler class, there exists a unique Ricci-flat
metric g with Kähler form in the Kähler class. This is known as the calabi-Yau metric

Now, suppose that our universal deformation X→M has fiberwise Calabi Yau metric. Then,

Theorem 7.5. c1(λBCOV ) = χ(M)
12 ωWP
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Proof. By the previous theorem,

c1(λBCOV ) = − 1

12

[∫
M

c1(TM) · cn(TM)

](1,1)

Now, note that

c1(TM) = −c1(ΛnT ∗M) = −c1(π∗L) = −π∗c1(L) = −π∗ωWP

Here, L is a line bundle determined by the fiberwise Calabi Yau metric. The first equality follows by triviality
of the canonical bundle, and the third by functoriality of the Chern classes, and the last by construction.
Now noting that −π∗ωWP has no vertical component, we have that

c1(λBCOV ) = − 1

12

[∫
M
−π∗ωWP · cn(TM)

](1,1)

=
−ωWP

12

∫
M

cn(TM) =
−ωWP

12
χ(M)

as desired

Now let us reinterpret what we have done so far. Recall that

λBCOV =
⊗
p,q

Det(Hp,q(M))(−1)p+qp

And that each Hp,q(M) ∼= ker∆∂̄

∣∣
Ωp,q

as a C∞ vector bundle over X. Here, ker∂̄ is the Dolbeault Laplacian.

Over this, there is a natural L2 metric from the determinant of the Laplacian.

Definition 7.4. The kth Hodge form is

ωHk =

n∑
p=0

p · c1(Hp,k−p) =

n∑
p=0

c1(FpHk)

Here F is the Hodge filtration.

And now we have the relation between the Quillen metric on ΛBCOV and the torsion

‖ · ‖2Q = ‖ · ‖2L2TBCOV

Recall that

TBCOV =

n∏
p,q=1

Det(∆p,q

∂̄
)(−1)p+qpq

Then, what we have done is that

Theorem 7.6. (Genus 1 holomorphic anomaly formula)

∂∂̄logTBCOV =

2n∑
k=0

(−1)kωHk −
χ(M)

12
ωWP

Proof. From above, we have that
χ(M)

12
ωWP = c1(λBCOV )

But by construction of the metric on λBCOV , it now follows that

c1(λBCOV ) =

n∑
p=0

(−1)p+qpc1(Hp,q)− ∂∂̄logTBCOV

=

2n∑
k=0

(−1)k
k∑
p=0

pc1(Hp,k−p)− ∂∂̄logTBCOV

=

2n∑
k=0

(−1)kωHk − ∂∂̄logTBCOV

and we are done.
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This theorem leads into the BCOV Conjecture

Conjecture (BCOV) Let (X,X∨) be a Mirror pair of Calabi Yau 3-folds. Let M be the moduli space
of complex structures over X. Finally, let L→M be the vacuum line bundle. Then

1. There exists a C∞ section Fg ∈ C∞(M, L2−2g) called the genus g topological string amplitude

2. Fg satisfies the BCOV holomorphic anomaly formula:

∂∂̄Fg =

2n∑
k=0

(−1)kωHk −
χ(M)

12
ωWP

and ∂̄Fg satisfies a certain recursive formula in terms of the g − 1 and g − 2 amplitudes

3. There exists a procedure of passing to the holomnorphic limit to obtain a holomorphic section Fg ∈
H0(M, L2−2g

4. The gromov witten potential Fg(Q) of X∨ is obtained from Fg via the Mirror map.

Remark. 1. This is the Topological string formulation of Mirror Symmetry for genus g ≥ 1.

2. There is also a homological mirror symmetry formuklation of Kontsevich

3. Furthermore, there is also the SYZ construction of Mirror pairs.
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