Notes on Connes fiberation

Junrong Yan

In [1], Connes constructs the so called Connes foliation, which plays an important role in studing flat vector bundles.

1 Connes's construction

Definition 1.1 (Connes fiberation). Let (M, g) be a smooth manifold. We define Connes fiberation $\pi: \mathcal{M} \mapsto M$ to be a fiber bundle, such that each fiber $\pi^{-1}(p)=$ $\mathrm{GL}^{+}\left(T_{p} M\right) / \mathrm{SO}\left(T_{p} M\right) \cong \mathrm{GL}_{n}^{+}(\mathbb{R}) / \mathrm{SO}_{n}(\mathbb{R})$. It's easy to see that a global section of this fiber bundle gives a Riemannian metric on M.

To better comprehend Connes fiberation, let's examine the homogeneous space

$$
\mathcal{H}=\mathrm{GL}_{n}^{+}(\mathbb{R}) / \mathrm{SO}_{n}(\mathbb{R}) \cong \text { all positive definite matrix }
$$

in depth.
If $f: \mathbb{R}^{n} \mapsto \mathbb{R}^{n}$ is a linear isomorphism that preserves orientation, then it induces a map

$$
\begin{aligned}
L(f): \mathcal{H} & \mapsto \mathcal{H}, \\
A & \mapsto f \circ A \circ f^{T},
\end{aligned}
$$

where A is positive definite. Moreover, we can observe that $\mathrm{GL}_{n}^{+}(\mathbb{R})$ acts transitively on \mathcal{H}.

Proposition 1.1. \mathcal{H} could carry a metric of non-positive sectional curvature, which is invariant under $\mathrm{GL}_{n}^{+}(\mathbb{R})$ in the sense described above.

Proof. Let I be the identity matrix, then we can deduce that $T_{I} \mathcal{H}:=\{$ all symmetry matrix $\}$. Let g_{I} be a metric on $T_{I} \mathcal{H}$ given by

$$
g_{I}(X, Y)=\operatorname{tr}(X Y), X, Y \in T_{I} \mathcal{H} .
$$

For any $A \in \mathcal{H}$, we can find $C \in G L_{n}^{+}(\mathbb{R})$, s.t. $A=C C^{T}$, i.e. $A=L(C) I$, therefore, for any $X, Y \in T_{A} \mathcal{H}$, define

$$
g_{A}(X, Y)=\left(L\left(C^{-1}\right)_{*} g_{I}\right)(X, Y)=g_{I}\left(L\left(C^{-1}\right)_{*} X, L\left(C^{-1}\right)_{*} Y\right)
$$

Definition 1.2. Let (M, g) be a Riemannian manifold, F be a sub-bundle of $T M, F^{\perp}$ be the orthogonal complement of F w.r.t g. We say that a diffeomorphism $f: M \mapsto M$ is almost isometry w.r.t. F if both $\left.f_{*}\right|_{F}$ and $\left.\mathcal{P}^{\perp} f_{*}\right|_{F \perp}$ are isometric, where $\mathcal{P}^{\perp}: T M \mapsto$ F^{\perp} is the orthogonal projection.

Assume M is orientable. Consider the principle bundle $P=P_{\mathrm{GL}_{n}^{+}(\mathbb{R})} \rightarrow M$ with respect to $T M \rightarrow M$, a connection $\nabla^{T M}$ on M gives a lift from $T M$ to $T^{H} P$, which also naturally gives a lift from $T M$ to $T^{H} \mathcal{M}$. Each $v \in \mathcal{M}$, by definition, gives a metric on $T_{\pi(v)} M$, and thus also gives a tautological metric g^{H} on $T^{H} \mathcal{M}$. By Proposition 1.1, we have a canonical metric g^{V} on $T^{V} \mathcal{M}$ that gives a metric of non-positive sectional curvature fiberwisely. Now $g^{\mathcal{M}}:=g^{H} \oplus g^{V}$ gives a Riemann metric on \mathcal{M}.

Any diffeomorphism $f: M \mapsto M$, as discussed above, induces a diffeomorphism $L(f): \mathcal{M} \mapsto \mathcal{M}$.

Proposition 1.2. $L(f)$ is almost isometric w.r.t. $T^{V} \mathcal{M}$.
Proof. By Proposition 1.1, we can see $\left.L(f)_{*}\right|_{T^{V} \mathcal{M}}$ is isometric. Take any $X \in T_{v}^{H} \mathcal{M}, v \in$ \mathcal{M}, which is lifted by $\widetilde{X} \in T_{p} M, p=\pi(v)$. Then $\mathcal{P}^{\perp} L(f)_{*}(X)$ is lifted by $f_{*}(\widetilde{X})$, since $\pi_{*} L(f)_{*}=f_{*}$. Now we have

$$
\begin{aligned}
& g_{L(f)(v)}^{H}\left(\mathcal{P}^{\perp} L(f)_{*}(X), \mathcal{P}^{\perp} L(f)_{*}(X)\right)=L(f)(v)\left(f_{*}(\widetilde{X}), f_{*}(\tilde{X})\right) \\
& =v\left(f_{*}^{-1} f_{*}(X), f_{*}^{-1} f_{*}(X)\right)=v(X, X)=g_{v}^{H}(X, X)
\end{aligned}
$$

2 Zhang's construction (version 1)

In [3] and [2], Zhang generalize the constructions of Connes fiberation. Here we introduce the first version.

Definition 2.1 (Connes fiberation for foliation). Let $\left(M, F, g^{M}\right)$ be a foliated manifold, and F^{\perp} be the orthogonal complement of F w.r.t. g. Connes fiberation for foliation $\pi: \mathcal{M} \mapsto M$ is the fiber bundle, whose fiber $\pi^{-1}(p):=\mathrm{GL}^{+}\left(F_{p}^{\perp}\right) / \mathrm{SO}\left(F_{p}^{\perp}\right)$.
Definition 2.2 (Bott connection). Let ∇^{M} be the Levi-Civita Connection w.r.t. g^{M}, $\mathcal{P}^{\perp}: T M \mapsto F$ be the orthogonal projection. Then Bott connection ∇^{B} on F^{\perp} is defined by

$$
\begin{aligned}
\nabla_{X}^{B} Y & =\mathcal{P}^{\perp} \nabla_{X}^{T M} Y, X, Y \in \Gamma\left(F^{\perp}\right) \\
\nabla_{X}^{B} Y & =\mathcal{P}^{\perp}[X, Y], X \in \Gamma(F), Y \in \Gamma\left(F^{\perp}\right) .
\end{aligned}
$$

It's straightforward to verify that when restricts to each foliation, ∇^{B} is flat, i.e. $\left(\nabla^{B}\right)_{X, Y}^{2}=0, \forall X, Y \in \Gamma(F)$.

Now, we could lift $T M$ to a subbundle $T^{H} \mathcal{M}$ by Bott connection as what we did in the last section. Moreover, since ∇^{B} is flat on each leaf, F was lifted to an integral bundle \mathcal{F}. Let $g^{\mathcal{F}}$ be the metric on \mathcal{F} given by

$$
g^{\mathcal{F}}(X, Y)=g^{T} M\left(\pi_{*} X, \pi_{*} Y\right), X, Y \in \Gamma(F)
$$

Also, each $v \in \mathcal{M}$ gives a tautological metric $g^{\mathcal{F}^{\perp}}$ on $\mathcal{F}^{\perp}:=T^{H} \mathcal{M} / \mathcal{F}$ by

$$
g^{\mathcal{F}^{\perp}}(X, Y)=v\left(\pi_{*}(X), \pi_{*}(Y), X, Y \in \Gamma\left(\mathcal{F}^{\perp}\right)\right.
$$

We also have a nature metric g^{V} on $T^{V} \mathcal{M}$. Now we have a metric $g^{\mathcal{M}}$ on $T \mathcal{M}$ given by $g^{\mathcal{M}}=g^{\mathcal{F}} \oplus g^{\mathcal{F}^{\perp}} \oplus g^{V}$.

Let $\widetilde{\mathcal{F}}:=T \mathcal{M} / \mathcal{F} \cong \mathcal{F}^{\perp} \oplus T^{V} \mathcal{M}, g^{\widetilde{\mathcal{F}}}=g^{\mathcal{F}^{\perp}} \oplus g^{V}$.
So far we have a foliated manifold $(\mathcal{M}, \mathcal{F})$, let \mathcal{G} be the holonomy groupoid w.r.t. \mathcal{F} and Bott connection on $\widetilde{\mathcal{F}}$. Each $\tau \in \mathcal{G}$ induces a linear map from $\widetilde{F}_{s(\tau)}$ to $\widetilde{F}_{r(\tau)}$, then we have
Proposition 2.1. $\tau: \widetilde{\mathcal{F}}_{s(\tau)} \mapsto \widetilde{\mathcal{F}}_{r(\tau)}$ is almost isometric w.r.t. $T^{V} \mathcal{M}$, i.e. $\left.\tau\right|_{T^{V} \mathcal{M}}$ and $\left.\mathcal{P}^{\mathcal{F}^{\perp}} \circ \tau\right|_{\mathcal{F}^{\perp}}$ are isometric w.r.t $g^{\widetilde{F}}$, where $\mathcal{P}^{F^{\perp}}: \widetilde{\mathcal{F}} \mapsto \mathcal{F}^{\perp}$ is the orthogonal projection.
Proof. Let $\tau \in \mathcal{G}$ be generated by a vector field $X \in \mathcal{F}$, extend X to whole \mathcal{M}, (still denote the extension as X) s.t. X has compact support on \mathcal{M}, and in a neighborhood U of $\tau,\left.X\right|_{U} \in \Gamma(U, \mathcal{F})$. Let $\widetilde{X}=\pi_{*} X, \widetilde{\phi}^{t}$ be the flow generated by \widetilde{X}, ϕ^{t} be the flow generated by X.

Let $U \in \widetilde{\mathcal{F}}_{s(\tau)}$, we claim:

1. $L\left(\widetilde{\phi}^{t}\right)=\phi^{t}$.
2.

$$
\mathcal{P}^{\widetilde{\mathcal{F}}} \phi_{*}^{t}(U) \text { is parallel along } \tau
$$

where $\mathcal{P}^{\widetilde{\mathcal{F}}}: T \mathcal{M} \mapsto \widetilde{\mathcal{F}}$ is the orthogonal projection.
By a similar argument as in Proposition 1.1 and Claim $1, \mathcal{P}^{\widetilde{\mathcal{F}}} \phi_{*}^{t}$ is almost isometric. By Claim 2, we can see that τ is almost isometric. So it reduces to prove the claims above.

Let's prove Claim 2 first.
Let $\gamma:(-\epsilon, \epsilon)$ be a smooth curve with $\gamma(0)=s(\tau), \gamma^{\prime}(0)=U$. Let $F(s, t)=\phi^{t}(\gamma(s))$, then

$$
0=\left[F_{*}\left(\frac{\partial}{\partial s}\right), F_{*}\left(\frac{\partial}{\partial t}\right)\right]_{t=0, s=0}=\left[\phi_{*}^{t}(U), X(s(\tau))\right] .
$$

Therefore

$$
\begin{aligned}
& \left.\nabla_{X} \mathcal{P}^{\widetilde{\mathcal{F}}} \phi^{t}(U)\right|_{t=0}=\mathcal{P}^{\widetilde{\mathcal{F}}}\left[X, \mathcal{P}^{\widetilde{\mathcal{F}}} \phi^{t}(U)\right]_{t=0} \\
& =\mathcal{P}^{\tilde{\mathcal{F}}}\left[X, \phi^{t}(U)\right]-\mathcal{P}^{\tilde{\mathcal{F}}}\left[X, \mathcal{P}^{\mathcal{F}} \phi^{t}(U)\right] \\
& =0 \text { (Since } \mathcal{F} \text { is integrable). }
\end{aligned}
$$

Now we just need to prove Claim 1 locally. Hence we can assume $\mathcal{M}=M \times$ $\mathrm{GL}_{n}^{+}(\mathbb{R}) / S O_{n}(\mathbb{R})$. Let $\widetilde{X} \in F$, then \widetilde{X} is lifted to $(\widetilde{X},-w(\widetilde{X}))$ when restricts on $M \times I \subset$ \mathcal{M}, where $w=\nabla^{B}-d \in\{$ Symmetry matrix valued 1 -form $\}$. While

$$
\left.\frac{\partial L\left(\widetilde{\phi}^{t}\right)}{\partial t}\right|_{M \times I, t=0}=\left(\widetilde{X}, \frac{\partial}{\partial t} \widetilde{\phi_{*}^{-t}} I\left(\widetilde{\phi^{-t}}\right)^{T}\right)=(\widetilde{X},-w(\widetilde{X}))
$$

where the last equality follows from the definition of Bott connection.

3 Zhang's construction version 2

Definition 3.1 (Connes fiberation for flat bundle). Let $p: E \mapsto M$ be a flat vector bundle with flat connection ∇ and fiber F, Connes fiberation $\pi: \mathcal{M} \mapsto M$ is a fiber bundle, s.t. $\pi^{-1}(x)=\mathrm{GL}^{+}\left(F_{x}\right) / \mathrm{SO}\left(F_{x}\right)$.

We can lift $T M$ to a integrable subbundle $T^{H} \mathcal{M}$ of $T \mathcal{M}$. Then we can consider Bott connection on $T^{V} \mathcal{M}$ for this foliation. Also, we have canonical metric $g^{T^{V} \mathcal{M}}$ on $T^{V} \mathcal{M}$.

Since a flat connection is not always preserve the metric, however, we have
Proposition 3.1. Let $\mathcal{F}:=\pi^{*} p^{*} F$, we then have a tautological metric $g^{\mathcal{F}}$ on \mathcal{F},

1. The Bott connection on $\left(T^{V} \mathcal{M}, g^{T^{V} \mathcal{M}}\right)$ is leafwise Euclidean.
2. There exists a canonical Euclidean connection $\nabla^{\mathcal{F}}$ on $\left(\mathcal{F}, g^{\mathcal{F}}\right)$ such that for any $X, Y \in \Gamma\left(\mathcal{M}, T^{H} \mathcal{M}\right)$, one has

$$
\left(\nabla^{\mathcal{F}}\right)_{X, Y}^{2}=0
$$

Proof. The proof of first part is similar to what we did in the last section.
For the section part, $T M$ was lifted to a integrable subbundle $T^{H} E$ of $T E$, then $p_{*} E \cong T^{V} E$ then consider the Connes fiberation $\bar{\pi}: \mathcal{E} \mapsto E$ w.r.t. this foliation. We can see that $\mathcal{E}^{0}:=T \mathcal{E} /\left(T^{V} E \oplus \mathcal{E}^{1}\right) \cong \bar{\pi}_{*} p_{*} E$, where \mathcal{E}^{1} was the integrable subbundle lifted by $T^{H} E$ under Bott connection. By Proposition 2.1, there exists an Euclidean connection on \mathcal{E}^{0}. Since $\mathcal{M}=\bar{\pi}^{-1}(M)$, we can see that there exists an Euclidean connection on \mathcal{F}.

References

[1] A. Connes. Cyclic cohomology and the transverse fundamental class of a foliation. Geometric methods in operator algebras, 123:52-144, 1983.
[2] Yu, J. and W. Zhang. Positive scalar curvature and the Euler class. Journal of Geometry and Physics, 126:193-203, 2018.
[3] W. Zhang. Positive scalar curvature on foliations. Annals of Mathematics, pages 1035-1068, 2017.

