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1 Dirac Operators

1.1 Motivation

According to Einstein’s (special) relativity, a free particle of mass m in R3 with
momentum vector p = (p1, p2, p3) has energy

E = c
√
m2c2 + p2 = c

√
m2c2 + p21 + p22 + p23.

For simplicity, we assume that c = 1. Passing to quantum mechanics, one
replaces E by the operator i ∂

∂t , and pj by −i ∂
∂xj

. Therefore the particle now is

described by a state function Ψ(t, x) satisfying the equation

i
∂Ψ

∂t
=

√
m2 +∆Ψ.

Here the Laplacian

∆ = −
∑
j

∂2

∂x2
j

.

This motivates Dirac to look for a (Lorentz invariant) square root of ∆. In
other words, Dirac looks for a first order differential operator with constant
coefficients

D = γj
∂

∂xj
+mγ0

such that D2 = m2 +∆. It follows that

γiγj + γjγi = 0 if 0 ≤ i ̸= j ≤ 3; γ2
0 = 1 and γ2

i = −1 for i = 1, 2, 3.

Dirac realized that, to have solutions, the coefficients γi will have to be complex
matrices.

1.2 Clifford Algebra

To generalized Dirac operator on higher dimensional manifolds, we introduce
Clifford algebra.
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Definition 1 (Clliford algebra). Let (V, ⟨·, ·⟩) be an n-dimensional Euclidean
space with an orthonormal basis {ei}ni=1. The Clifford algebra Cl(V ) (or denoted
by Cln) is the real algebra generated by 1, e1, · · · , en subject only to the relations

eiej + ejei = −2δij .

It is clear that

1, e1, · · · , en1
e1e2, · · · , ei1ei2 · · · eik (i1 < i2 < · · · < ik) , · · · , e1 · · · en

is a vector space basis for Cln. Hence Cln ∼= Λ∗V as vector spaces (they are
actually isomorphic as Clifford module).

Example 1. One can see esaily that Cl1 ≡ C, where e1 corresponds to i.
Cl2 ≡ H, the quaternions, and the basis vectors e1, e2, e1e2 correspond to I, J,K.

Definition 2 (Complexification of Clifford Algebra). We consider the complex-
ification of the Clifford algebra

Cln = Cln ⊗R C.

Example 2. First, one can see essily that

Cl1 = Cl1 ⊗R C = C⊗R C ≡ C⊕ C,
Cl2 = Cl2 ⊗R C = H⊗R C ≡ End(C2).

In fact, one has

Theorem 1. One has the mod 2 periodicity

Cln =

 End
(
C2n/2

)
if n is even;

End
(
C2(n−1)/2

)
⊕ End

(
C2(n−1)/2

)
if n is odd .

Definition 3. A Clifford module (M, c) consists of a C-vector space M and a
morphism c : Cln → End(M). Then Cln acts on M as matrix multiplication
via c.

Example 3. The exterior algebra Λ∗V ⊗R C is a Clifford module, the Clifford
action is given by

c(ei)w = ei ∧ w − ιeiw,

where ι is the interior product.

By the mod 2 periodicity, one can see that, when n is even, Cln has a
canonical 2n/2-dimensional module, denoted by (∆n, c), whose Clifford action
c is given by the matrix multiplication; when n is odd, Cln has two canonical
2n/2-dimensional module, denoted by (∆i

n, c), i = 0, 1, whose Clifford action c
is given by the matrix multiplication of i-th components.
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1.3 Dirac operator on Rn

Now, we are in a position to talk about Dirac operator on Rn. Given a Clifford
module (M, c), the Dirac operator D :=

∑n
i=1 c(ei)∂i is a first order differential

on M -valued function on Rn. Moreover, one can check easily that D2 = ∆.

1.4 Dirac operators

Let (Xn, g) be a closed Riemannian manifold of dimension n, locally, for any
Clifford module M , the construction in Section 1.3 could be done. The prob-
lem is that one can’t glue the locally construction usually, and there are some
topological obstruction. However, if (X, g) is spin, such construction could be
done.

Definition 4. We say a Riemannian manifold (X, g) is spin if w0(X) and
w1(X) vanish, where w0 and w1 are Stiefel-Whitney of tangent bundle.

Remark 1. w0 = 0 iff M is orientable.

If (X, g) is spin, then

Theorem 2. There exists a Hermitian vector bundle (S → X, ⟨·, ·⟩), called
spinor bundle, such that

1. S has a unitary connection ∇S.

2. together with a Clifford action c : Γ(T ∗X)× Γ(S) → Γ(S) satisfying

• (Leibniz’s rule)∇S(c(v)s) = c(∇LCv)s+c(v)∇Ss for all v ∈ Γ(T ∗M), s ∈
Γ(S), where ∇LC is the Levi-Civita connection.

• If g(v, v) = 1, then ⟨c(v)s1, c(v)s2⟩ = ⟨s1, s2⟩ for all v ∈ Γ(T ∗M), s1, s2 ∈
Γ(S).

Moreover, suppose locally ∇LCei =
∑

j wijej, then connection ∇S could be
given by

∇S = d+
∑
i,j

wij

4
c(ei)c(ej). (1)

Remark 2. When M = Rn, S := Rn ×∆n.

Example 4. • Tn,Rn, any Lie group G and any 3 dimensional orientable
manifolds are spin, since their tangent bundle are trivial.

• All orientable surfaces are spin.

• A complex manifold X is spin iff c1(X) ≡ 0(mod2).

• RPn is spin iff n ≡ 3 mod 4;CPn is spin iff n odd (n ≡ 1 mod 2); HPn is
always spin.

• Since {wi} are homotopy invariants, hence if X and Y are homotopic
equivalent, then X is spin iff Y is spin.
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1.5 Lichnerowicz Formula

Definition 5. If (X, g) is spin, and let S → X be the spinor bundle, then the
Dirac operator D : Γ(S) → Γ(S) is defined by

D :=
∑
i

c(ei)∇S
ei ,

where {ei}ni=1 is a local orthonormal frame of T ∗X.

Theorem 3. D2 = ∆+ k
4 , where k is the scalar curvature on X.

Proof. Assume that at p ∈ X, ∇LCei = 0, then by a straightforward computa-
tion,

D2 : =
∑
i,j

c(ei)∇S
eic(ej)∇

S
ej

=
∑
i

c(ei)∇S
eic(ei)∇

S
ei +

∑
i̸=j

c(ei)∇S
eic(ej)∇

S
ej

=
∑
i

c(ei)c(ei)∇S
ei∇

S
ei +

∑
i̸=j

c(ei)c(ej)∇S
ei∇

S
ej (By Leibniz’s rule and ∇LCei = 0)

= −
∑
i

∇S
ei∇

S
ei +

∑
i<j

c(ei)c(ej)(∇S
ei∇

S
ej −∇S

ej∇
S
ei) (Since c(ei)c(ej) + c(ej)c(ei) = −2δij)

= ∆+
∑
i<j

c(ei)c(ej)R
S(ei, ej)

= ∆+
1

8
Rijklc (ei) c (ej) c (ek) c (el) (By (1))

= ∆+
1

8

∑
l

1

3

∑
i,j,k

(Rijkl +Rjkil +Rkijl) c (ei) c (ej) c (ek)

+
∑
i,j

Rijilc (ei) c (ej) c (ei) +
∑
i,j

Rijjlc (ei) c (ej) c (ej)

 c (el)

= ∆+
1

4
Rijilc (ej) c (el) (By Bianchi identity)

= ∆− 1

4
Ric (ej , el) c (ej) c (el)

= ∆+
1

4
Ric (ej , el) δjl

= ∆+
k

4

When (X, g) admits PSC,D2 is a strictly positive operator, hence by Atiyah-
Singer index theorem
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Theorem 4. Let (X, g) be closed and spin, then if (X, g) admits PSC, then
Â-genus vanishes.

See next section for the definition of hatA-genus.

Remark 3. The inverse is not ture. In fact, by a more refined argument (we
introduce the notion of enlargibility), one can show that Tn can’t admit a metric
of PSC, but its Â-genus vanishes. Indeed, one can prove that if X is closed
and spin, X#Tn cannot admit a metric of PSC (we prove this before in the
lower dimension using the minimal surface technique without assuming the spin
condition).

2 Enlargeability

Last time: Let (M, g) AF with nonnegative scalar curvature. Then M1#Tn has
no PSC implies that the PMT holds on M .

We proved earlier in the term that if 3 ≤ n ≤ 7 and Mn is closed then
Mn#Tn has no PSC. So for 3 ≤ n ≤ 7 we get PMT without needing M to be
spin. Our current goal is to show that if M is closed and spin then Mn#Tn has
no PSC, which gives a proof of PMT for the spin case.

Definition 6. Suppose f : Xn → Y n is C1 and ϵ > 0. We say f is ϵ-
contractible if for all p ∈ X, f∗ : TpY → Tf(p)Y is ϵ-contractible; that is,
for all v ∈ TpX, ∥f∗v∥Y ≤ ϵ∥v∥X .

Example 5. For any ϵ > 0 there is an ϵ-contractible map f ;Rn → Sn(1).

Definition 7. A compact riemannian n-manifold is said to be enlargeable if for
every ε > 0 there exists an orientable riemannian covering space which admits
an ε-contracting map onto Sn(1) which is constant at infinity and of non-zero
degree. If for each ε > 0, there is a finite covering space with these properties,
we call the manifold compactly enlargeable.

Remark 1. A map is constant at infinity if it is constant outside a compact
set. The degree of such a map f : X → Sn is defined as

deg(f) =

∫
X
f∗ω∫

Sn ω

where ω is an n-form on Sn with non-zero integral. The degree can also be
defined as usual in terms of signed counting of pre-images of of f at regular
values.

The square flat torus Tn = Rn/Zn is certainly enlargeable since the universal
covering space has the required mappings for all ε > 0. This torus is, in fact,
compactly enlargeable. We see this as follows. For each k ∈ Z+, the lattice
(k ·Z)n ⊂ Zn gives a kn-fold covering torus T̃n ≡ Rn/(k ·Z)n, which admits the
(π/k)-contracting map to Sn(1) of degree 1 pictured above.
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Theorem 1. The following statements hold in the category of compact mani-
folds:

(A) Enlargeability is independent of the riemannian metric.

(B) Enlargeability depends only on the homotopy-type of the manifold.

(C) The product of enlargeable manifolds is enlargeable.

(D) The connected sum of any manifold with an enlargeable manifold is again
enlargeable.

(E) Any manifold which admits a map of non-zero degree onto an enlargeable
manifold is itself enlargeable.

Proof. It is evident that (E) ⇒ (B) ⇒ (A) and that (E) ⇒ (D). To prove (E)
we consider two compact oriented riemannian n-manifolds X and Y , and a map
F : X → Y of non-zero degree. By compactness there exists a c > 0 so that
∥dF∥ ≦ c on X (i.e., F is c-contracting). Given ε > 0, there is a riemannian
covering space p : Ỹ → Y which admits a (ε/c)-contracting map f : Ỹ → Sn(1)
which is constant outside a compact set K̃ ⊂ Ỹ and of nonzero degree. Taking
the fibre product of p and F gives a covering space p′ : X̃ → X and a proper
mapping F̃ : X̃ → Ỹ so that the diagram

X̃ Ỹ

X Y

F̃

p′ p

F

commutes. Since F̃ is a lifting of F , we have ∥∇F̃∥ ≦ c on X̃. Hence, the
composition f ◦ F̃ : X̃ → Sn(1) is ε-contracting. Since F̃ is proper, we see
that f ◦ F̃ is constant outside the compact set F̃−1(K̃). It is easy to see that:
deg(f ◦ F̃ ) = deg(f) deg(F ) ̸= 0. Hence, X is enlargeable as claimed.

To prove (C), we fix a degree-1 map ϕ : Sn(1)× Sm(1) → Sn+m(1) (Recall
that Sn+m ∼= Sn × Sm/Sm ∨ Sn) and let c = sup ∥dϕ∥. This map is chosen to
be constant on the set (Sn(1)× {∗})∪ ({∗} × Sm(1)), where each ”*” denotes
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a distinguished point in the sphere. Suppose now that we are given (ε/c)-
contracting maps, f : Xn → Sn(1) and g : Xm → Sm(1), which are constant
(= ∗) at infinity and of non-zero degree. Then the map ϕ◦(f×g) : Xn×Y m −→
Sn+m(1) is ε-contracting, constant at infinity and of non-zero degree. From here
the argument is straightforward.

Theorem 2. An enlargeable spin manifold X cannot carry a metric of positive
scalar curvature.

2.1 Review on index Theorem and Lichnerowicz Formula

Theorem 3. Let M be a closed Spin manifold, S → M be the spinor bundle with
spinor connection ∇S. Let E → M be a complex vector bundle with a unitary
connection ∇E. On S⊗E, one has connection ∇S⊗E := ∇S ⊗ 1+1⊗∇E, i.e.,
for any s ∈ Γ(s), e ∈ Γ(E), ∇S⊗Es⊗e = ∇Ss⊗e+s⊗∇Ee. Also, S⊗E admits
a clifford acction, such that for any X ∈ Γ(TM), c(X)s⊗ e = (c(X)s)⊗ e. Let
DS⊗E :=

∑
i c(ei)∇S⊗E

ei be the Dirac operator (where {ei} is a local orthonormal
frame), then

ind(DS⊗E) =

∫
M

Â(M)ch(E).

Theorem 4 (Lichnerowicz formula).

(DS⊗E)2 = ∆+ k/4 +RE ,

where k is the scalar curvature of M , ∆ is the connection Laplacian with respect
to ∇S⊗E, RE :=

∑
i,j c(ei)c(ej)R

E(ei, ej), R
E is the curvature on E.

2.2 Quick introduction to Chern-Weil theory

Let E → M be a smooth complex vector bundle over a smooth compact manifold
M . We denote by Ω∗(M ;E) the space of smooth sections of the tensor product
vector bundle Λ∗ (T ∗M)⊗ E obtained from Λ∗ (T ∗M) and E :

Ω∗(M ;E) := Γ (Λ∗ (T ∗M)⊗ E) .

Definition 1. A connection ∇E on E is a C-linear operator ∇E : Γ(E) →
Ω1(M ;E) such that for any f ∈ C∞(M), X ∈ Γ(E), the following Leibniz rule
holds,

∇E(fX) = (df)X + f∇EX.

Just like the exterior differential operator d, a connection ∇E can be ex-
tended canonically to a map, which we still denote by ∇E ,

∇E : Ω∗(M ;E) −→ Ω∗+1(M ;E)

such that for any ω ∈ Ω∗(M), X ∈ Γ(E),

∇E : ωX 7→ (dω)X + (−1)degωω ∧∇EX
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Definition 2. The curvature RE of a connection ∇E is defined by

RE = ∇E ◦ ∇E : Γ(E) → Ω2(M ;E),

which, for brevity, we will write RE =
(
∇E

)2
.

One can see that RE may be thought of as an element of Γ(End(E)) with
coefficients in Ω2(M). In other words,

RE ∈ Ω2(M ; End(E))

To give a more precise formula, if X,Y ∈ Γ(TM) are two smooth sections of
TM , then RE(X,Y ) is an element in Γ(End(E)) given by

RE(X,Y ) = ∇E
X∇E

Y −∇E
Y ∇E

X −∇E
[X,Y ].

Finally, in view of the composition of the endomorphisms, one sees that for
any integer k ≥ 0,

(
RE

)k
=

k︷ ︸︸ ︷
RE · · · · · ·RE : Γ(E) −→ Ω2k(M ;E)

is a well-defined element lying in Ω2k(M ; End(E)).
For any smooth section A of the bundle of endomorphisms, End (E), the

fiberwise trace of A forms a smooth function on M . We denote this function by
tr[A]. This further induces the map

tr : Ω∗(M ; End(E)) −→ Ω∗(M)

such that for any ω ∈ Ω∗(M) and A ∈ Γ(End(E)),

tr : ωA 7→ ω tr[A].

We still call it the function of trace.
Let

f(x) = a0 + a1x+ · · ·+ anx
n + · · ·

be a power series in one variable. Let RE be the curvature of a connection ∇E

on E. The trace of

f
(
RE

)
= a0 + a1R

E + · · ·+ an
(
RE

)n
+ · · ·

is an element in Ω∗(M). We can now state a form of the Chern-Weil theorem
as follows.

Theorem 5. (i) The form tr
[
f
(
RE

)]
is closed. That is,

d tr
[
f
(
RE

)]
= 0.

(ii) If ∇̃E is another connection on E and R̃E its curvature, then there is a
differential form ω ∈ Ω∗(M) such that

tr
[
f
(
RE

)]
− tr

[
f
(
R̃E

)]
= dω.
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Since

det

(
I +

√
−1

2π
RE

)
= exp

(
tr

[
log

(
I +

√
−1

2π
RE

)])
in view of the following power series expansion formulas for log(1+x) and exp(x)

log(1 + x) = x− x2

2
+ · · ·+ (−1)n+1xn

n
+ · · ·

and

exp(x) = 1 + x+
x2

2
+ · · ·+ xn

n!
+ · · · .

By Theorem 5, the Chern class

c(E) =

[
det

(
I +

√
−1

2π
RE

)]
∈ H∗(M,C)

is some summation of even cohomologies, i.e., one has

c(E) = 1 + c1 (E) + · · ·+ ck (E) + · · ·

with each i-th Chern class

ci (E) ∈ H2i(M).

(Here for a closed differential form w, [w] denotes the cohomology represented
by w.)

Similarly, the Chern character and Â-class are defined by

ch (E, ) =

[
tr

(
exp

(√
−1

2π
RE

))]
∈ Heven (M),

Â (E) =

det

 √

−1
4π RE

sinh
(√

−1
4π RE

)
1/2


 .

It follows from the definition that Â0(E) = 1.
Moreover, Â(M) := Â(TM ⊗ C).

Definition 3. For [w] ∈ H∗(M), we define the pairing

⟨[w], [M ]⟩ := (

∫
M

w =)

∫
M

wn,

where wn is the top degree components of w.
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2.3 Proof of Theorem 2

For clarity’s sake we only present here a proof for the case of compactly enlarge-
able manifolds.

Let X be a compactly enlargeable n-manifold, and suppose X carries a
metric with κ ≧ κ0 for a constant κ0 > 0. We may assume that X has even
dimension 2n. (If not, replace X by X × S1.)

Choose a complex vector bundle E0 over the sphere S
2n(1) with the property

that the top Chern class cn (E0) ̸= 0. (This is certainly possible, cf. [?]). We
now fix a unitary connection ∇E0 on E0 and we let RE0 denote the curvature
2-form. Moreover,

ch(E0) = rank(E0) +
1

(n− 1)!
cn(E0).

Let ε > 0 be given and choose a finite orientable covering X̃ → X which
admits an ε-contracting map f : X̃ → S2n(1) of non-zero degree. Using f , we
pull back the bundle E0, with its connection, to X̃. This gives us a bundle
E ≡ f∗E0 with connection ∇E ≡ f∗∇E0 . We then consider the complex spinor
bundle S of X̃ with its canonical riemannian connection, and consider the Dirac
operator DS⊗E on the tensor product S ⊗ E. We know from Theorem 4 that

(DS⊗E)2 = ∆+
k

4
+RE

where RE depends universally and linearly on the components of the curvature
tensor RE of E, Moreover∥∥RE

∥∥ ≤ C|f∗|2|RE0 | ≤ C ′ε2

for some C > 0.
Hence if ε is small, by Theorem 4, DS⊗E is invertible, hence ind(DS⊗E) = 0.
However, let m = rank(E0) this index is given by

ind
(
DS⊗E

)
= ⟨chE · Â(X̃), [X̃]⟩

=

∫
X̃

(
m+

1

(n− 1)!
cn(E)

)
· Â(X̃)

= m

∫
X̃

Ân(X̃) +

∫
X̃

1

(n− 1)!
cn(E)Â0

=

∫
X̃

1

(n− 1)!
cn (f

∗E0) (By Theorem 4)

=

∫
X̃

1

(n− 1)!
f∗ (cn (E0))

=
1

(n− 1)!
deg(f)

∫
S2n

cn (E0)

̸= 0,

which is a contradiction.
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